Using hierarchical spatial data structures for hierarchical spatial reasoning

This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Timpf, Sabine, Frank, Andrew U.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue
container_start_page 69
container_title
container_volume
creator Timpf, Sabine
Frank, Andrew U.
description This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient. Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning. A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result. The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.
doi_str_mv 10.1007/3-540-63623-4_43
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2035960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f9a16542a3faf75cd3dac9b1cb5206c901fd91b56cdea3f8bf0fb75c75ebe6813</originalsourceid><addsrcrecordid>eNptkD1PwzAQhs2XRCndGTOwutg-x45HhPiSiljobJ0duw2UpLLTgX-P2zJyyyvd--h0egi54WzOGdN3QGvJqAIlgEor4YRcQdkoo7iSp2TCFecUQJozMjO6OXR7WJ2TCQMmqNESLsks509WBoTSjZqQt2Xu-lW17kLC5Nedx02Vtzh2JVscscpj2vlxl0Ku4pD-B1PAPPTlzjW5iLjJYfaXU7J8evx4eKGL9-fXh_sF9UKzkUaDXNVSIESMuvYttOiN497VgilvGI-t4a5Wvg2FaVxk0RVO18EF1XCYktvj3S3m8khM2Psu223qvjH9WMGgNooVbH7Ecmn6VUjWDcNXtpzZvVMLtliyB0127xR-AYN0ZmM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using hierarchical spatial data structures for hierarchical spatial reasoning</title><source>Springer Books</source><creator>Timpf, Sabine ; Frank, Andrew U.</creator><contributor>Frank, Andrew U. ; Hirtle, Stephen C.</contributor><creatorcontrib>Timpf, Sabine ; Frank, Andrew U. ; Frank, Andrew U. ; Hirtle, Stephen C.</creatorcontrib><description>This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient. Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning. A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result. The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540636236</identifier><identifier>ISBN: 3540636234</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540696164</identifier><identifier>EISBN: 9783540696162</identifier><identifier>DOI: 10.1007/3-540-63623-4_43</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Detailed Representation ; Exact sciences and technology ; Information systems. Data bases ; Information theory ; Information, signal and communications theory ; Memory organisation. Data processing ; Quad Tree ; Software ; Spatial Data Structure ; Spatial Reasoning ; Spatial Relation ; Telecommunications and information theory</subject><ispartof>Lecture notes in computer science, 1997, p.69-83</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-f9a16542a3faf75cd3dac9b1cb5206c901fd91b56cdea3f8bf0fb75c75ebe6813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63623-4_43$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63623-4_43$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2035960$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Frank, Andrew U.</contributor><contributor>Hirtle, Stephen C.</contributor><creatorcontrib>Timpf, Sabine</creatorcontrib><creatorcontrib>Frank, Andrew U.</creatorcontrib><title>Using hierarchical spatial data structures for hierarchical spatial reasoning</title><title>Lecture notes in computer science</title><description>This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient. Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning. A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result. The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Detailed Representation</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Memory organisation. Data processing</subject><subject>Quad Tree</subject><subject>Software</subject><subject>Spatial Data Structure</subject><subject>Spatial Reasoning</subject><subject>Spatial Relation</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540636236</isbn><isbn>3540636234</isbn><isbn>3540696164</isbn><isbn>9783540696162</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNptkD1PwzAQhs2XRCndGTOwutg-x45HhPiSiljobJ0duw2UpLLTgX-P2zJyyyvd--h0egi54WzOGdN3QGvJqAIlgEor4YRcQdkoo7iSp2TCFecUQJozMjO6OXR7WJ2TCQMmqNESLsks509WBoTSjZqQt2Xu-lW17kLC5Nedx02Vtzh2JVscscpj2vlxl0Ku4pD-B1PAPPTlzjW5iLjJYfaXU7J8evx4eKGL9-fXh_sF9UKzkUaDXNVSIESMuvYttOiN497VgilvGI-t4a5Wvg2FaVxk0RVO18EF1XCYktvj3S3m8khM2Psu223qvjH9WMGgNooVbH7Ecmn6VUjWDcNXtpzZvVMLtliyB0127xR-AYN0ZmM</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Timpf, Sabine</creator><creator>Frank, Andrew U.</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19970101</creationdate><title>Using hierarchical spatial data structures for hierarchical spatial reasoning</title><author>Timpf, Sabine ; Frank, Andrew U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f9a16542a3faf75cd3dac9b1cb5206c901fd91b56cdea3f8bf0fb75c75ebe6813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Detailed Representation</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Memory organisation. Data processing</topic><topic>Quad Tree</topic><topic>Software</topic><topic>Spatial Data Structure</topic><topic>Spatial Reasoning</topic><topic>Spatial Relation</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timpf, Sabine</creatorcontrib><creatorcontrib>Frank, Andrew U.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timpf, Sabine</au><au>Frank, Andrew U.</au><au>Frank, Andrew U.</au><au>Hirtle, Stephen C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using hierarchical spatial data structures for hierarchical spatial reasoning</atitle><btitle>Lecture notes in computer science</btitle><date>1997-01-01</date><risdate>1997</risdate><spage>69</spage><epage>83</epage><pages>69-83</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540636236</isbn><isbn>3540636234</isbn><eisbn>3540696164</eisbn><eisbn>9783540696162</eisbn><abstract>This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient. Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning. A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result. The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63623-4_43</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 1997, p.69-83
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2035960
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Detailed Representation
Exact sciences and technology
Information systems. Data bases
Information theory
Information, signal and communications theory
Memory organisation. Data processing
Quad Tree
Software
Spatial Data Structure
Spatial Reasoning
Spatial Relation
Telecommunications and information theory
title Using hierarchical spatial data structures for hierarchical spatial reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20hierarchical%20spatial%20data%20structures%20for%20hierarchical%20spatial%20reasoning&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Timpf,%20Sabine&rft.date=1997-01-01&rft.spage=69&rft.epage=83&rft.pages=69-83&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540636236&rft.isbn_list=3540636234&rft_id=info:doi/10.1007/3-540-63623-4_43&rft_dat=%3Cpascalfrancis_sprin%3E2035960%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540696164&rft.eisbn_list=9783540696162&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true