Using hierarchical spatial data structures for hierarchical spatial reasoning
This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data struc...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | |
container_start_page | 69 |
container_title | |
container_volume | |
creator | Timpf, Sabine Frank, Andrew U. |
description | This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient.
Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning.
A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result.
The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks. |
doi_str_mv | 10.1007/3-540-63623-4_43 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2035960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f9a16542a3faf75cd3dac9b1cb5206c901fd91b56cdea3f8bf0fb75c75ebe6813</originalsourceid><addsrcrecordid>eNptkD1PwzAQhs2XRCndGTOwutg-x45HhPiSiljobJ0duw2UpLLTgX-P2zJyyyvd--h0egi54WzOGdN3QGvJqAIlgEor4YRcQdkoo7iSp2TCFecUQJozMjO6OXR7WJ2TCQMmqNESLsks509WBoTSjZqQt2Xu-lW17kLC5Nedx02Vtzh2JVscscpj2vlxl0Ku4pD-B1PAPPTlzjW5iLjJYfaXU7J8evx4eKGL9-fXh_sF9UKzkUaDXNVSIESMuvYttOiN497VgilvGI-t4a5Wvg2FaVxk0RVO18EF1XCYktvj3S3m8khM2Psu223qvjH9WMGgNooVbH7Ecmn6VUjWDcNXtpzZvVMLtliyB0127xR-AYN0ZmM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using hierarchical spatial data structures for hierarchical spatial reasoning</title><source>Springer Books</source><creator>Timpf, Sabine ; Frank, Andrew U.</creator><contributor>Frank, Andrew U. ; Hirtle, Stephen C.</contributor><creatorcontrib>Timpf, Sabine ; Frank, Andrew U. ; Frank, Andrew U. ; Hirtle, Stephen C.</creatorcontrib><description>This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient.
Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning.
A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result.
The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540636236</identifier><identifier>ISBN: 3540636234</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540696164</identifier><identifier>EISBN: 9783540696162</identifier><identifier>DOI: 10.1007/3-540-63623-4_43</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Detailed Representation ; Exact sciences and technology ; Information systems. Data bases ; Information theory ; Information, signal and communications theory ; Memory organisation. Data processing ; Quad Tree ; Software ; Spatial Data Structure ; Spatial Reasoning ; Spatial Relation ; Telecommunications and information theory</subject><ispartof>Lecture notes in computer science, 1997, p.69-83</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-f9a16542a3faf75cd3dac9b1cb5206c901fd91b56cdea3f8bf0fb75c75ebe6813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63623-4_43$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63623-4_43$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2035960$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Frank, Andrew U.</contributor><contributor>Hirtle, Stephen C.</contributor><creatorcontrib>Timpf, Sabine</creatorcontrib><creatorcontrib>Frank, Andrew U.</creatorcontrib><title>Using hierarchical spatial data structures for hierarchical spatial reasoning</title><title>Lecture notes in computer science</title><description>This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient.
Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning.
A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result.
The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Detailed Representation</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Memory organisation. Data processing</subject><subject>Quad Tree</subject><subject>Software</subject><subject>Spatial Data Structure</subject><subject>Spatial Reasoning</subject><subject>Spatial Relation</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540636236</isbn><isbn>3540636234</isbn><isbn>3540696164</isbn><isbn>9783540696162</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNptkD1PwzAQhs2XRCndGTOwutg-x45HhPiSiljobJ0duw2UpLLTgX-P2zJyyyvd--h0egi54WzOGdN3QGvJqAIlgEor4YRcQdkoo7iSp2TCFecUQJozMjO6OXR7WJ2TCQMmqNESLsks509WBoTSjZqQt2Xu-lW17kLC5Nedx02Vtzh2JVscscpj2vlxl0Ku4pD-B1PAPPTlzjW5iLjJYfaXU7J8evx4eKGL9-fXh_sF9UKzkUaDXNVSIESMuvYttOiN497VgilvGI-t4a5Wvg2FaVxk0RVO18EF1XCYktvj3S3m8khM2Psu223qvjH9WMGgNooVbH7Ecmn6VUjWDcNXtpzZvVMLtliyB0127xR-AYN0ZmM</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Timpf, Sabine</creator><creator>Frank, Andrew U.</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19970101</creationdate><title>Using hierarchical spatial data structures for hierarchical spatial reasoning</title><author>Timpf, Sabine ; Frank, Andrew U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f9a16542a3faf75cd3dac9b1cb5206c901fd91b56cdea3f8bf0fb75c75ebe6813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Detailed Representation</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Memory organisation. Data processing</topic><topic>Quad Tree</topic><topic>Software</topic><topic>Spatial Data Structure</topic><topic>Spatial Reasoning</topic><topic>Spatial Relation</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timpf, Sabine</creatorcontrib><creatorcontrib>Frank, Andrew U.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timpf, Sabine</au><au>Frank, Andrew U.</au><au>Frank, Andrew U.</au><au>Hirtle, Stephen C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using hierarchical spatial data structures for hierarchical spatial reasoning</atitle><btitle>Lecture notes in computer science</btitle><date>1997-01-01</date><risdate>1997</risdate><spage>69</spage><epage>83</epage><pages>69-83</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540636236</isbn><isbn>3540636234</isbn><eisbn>3540696164</eisbn><eisbn>9783540696162</eisbn><abstract>This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient.
Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning.
A formal definition of hierarchical spatial reasoning requires• a coarsening function c, which produces a series of less detailed representations from a most detailed data set,• a function of interest f which is applicable to these representations, and• a function f which computes for each representation the quality of the result.
The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63623-4_43</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 1997, p.69-83 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2035960 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Detailed Representation Exact sciences and technology Information systems. Data bases Information theory Information, signal and communications theory Memory organisation. Data processing Quad Tree Software Spatial Data Structure Spatial Reasoning Spatial Relation Telecommunications and information theory |
title | Using hierarchical spatial data structures for hierarchical spatial reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20hierarchical%20spatial%20data%20structures%20for%20hierarchical%20spatial%20reasoning&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Timpf,%20Sabine&rft.date=1997-01-01&rft.spage=69&rft.epage=83&rft.pages=69-83&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540636236&rft.isbn_list=3540636234&rft_id=info:doi/10.1007/3-540-63623-4_43&rft_dat=%3Cpascalfrancis_sprin%3E2035960%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540696164&rft.eisbn_list=9783540696162&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |