Sliding Mode Control: Mathematical Tools, Design and Applications
The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the slidi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | |
container_start_page | 289 |
container_title | |
container_volume | |
creator | Morse, A. Stephen Sontag, Eduardo D Sussmann, Hector J Utkin, Vadim I Agrachev, Andrei A |
description | The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades.
The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control. |
doi_str_mv | 10.1007/978-3-540-77653-6_5 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20357424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3068731_9_298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-fdcffa17db74e284c643ab6848e4d4d70be75171b2747ac78d805b2ff9ddfbdd3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhc0qSukv4JILNwzeknG4VWWVWnGgnC3HSxtI4xCHA_8et1TMZTTz5j2NPoQuKbmhhMBtCRJznAuCAYqc40LlB-icp8VuZodoRAsKuCxKdvQvCMGP0Sj5cywFF6doxICxUkpKztAkxg-SitOSETZC07emtnW7yhbBumwW2qEPzV220MPabfRQG91kyxCaeJ3du1iv2ky3Npt2XZOkoQ5tvEAnXjfRTfZ9jN4fH5azZzx_fXqZTefYcEYG7K3xXlOwFQjHpDCF4LoqpJBOWGGBVA5yCrRiIEAbkFaSvGLel9b6ylo-Rld_uZ2O6Svf69bUUXV9vdH9j2KE5yCYSHf07y4mqV25XlUhfEZFidpCVQmq4iqhUjuIKkFNHrbP7sPXt4uDcluTcQmHbsxad4Pro-KkkMCpKlXCyX8Bgv109w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>EBC3068731_9_298</pqid></control><display><type>conference_proceeding</type><title>Sliding Mode Control: Mathematical Tools, Design and Applications</title><source>Springer Books</source><creator>Morse, A. Stephen ; Sontag, Eduardo D ; Sussmann, Hector J ; Utkin, Vadim I ; Agrachev, Andrei A</creator><contributor>Stefani, Gianna ; Nistri, Paolo ; Nistri, Paolo ; Stefani, Gianna</contributor><creatorcontrib>Morse, A. Stephen ; Sontag, Eduardo D ; Sussmann, Hector J ; Utkin, Vadim I ; Agrachev, Andrei A ; Stefani, Gianna ; Nistri, Paolo ; Nistri, Paolo ; Stefani, Gianna</creatorcontrib><description>The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades.
The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540776443</identifier><identifier>ISBN: 9783540776444</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3540776532</identifier><identifier>EISBN: 9783540776536</identifier><identifier>DOI: 10.1007/978-3-540-77653-6_5</identifier><identifier>OCLC: 272298810</identifier><identifier>CODEN: LNMAA2</identifier><identifier>LCCallNum: Q295</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Designs and configurations ; Exact sciences and technology ; Experimental design ; General mathematics ; General, history and biography ; Mathematical Tool ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Slide Mode Control ; Slide Mode Controller ; Sliding Mode ; State Trajectory ; Statistics</subject><ispartof>Lecture notes in mathematics, 2008, p.289-347</ispartof><rights>Springer-Verlag Berlin Heidelberg 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-fdcffa17db74e284c643ab6848e4d4d70be75171b2747ac78d805b2ff9ddfbdd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3068731-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-77653-6_5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-77653-6_5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20357424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Stefani, Gianna</contributor><contributor>Nistri, Paolo</contributor><contributor>Nistri, Paolo</contributor><contributor>Stefani, Gianna</contributor><creatorcontrib>Morse, A. Stephen</creatorcontrib><creatorcontrib>Sontag, Eduardo D</creatorcontrib><creatorcontrib>Sussmann, Hector J</creatorcontrib><creatorcontrib>Utkin, Vadim I</creatorcontrib><creatorcontrib>Agrachev, Andrei A</creatorcontrib><title>Sliding Mode Control: Mathematical Tools, Design and Applications</title><title>Lecture notes in mathematics</title><description>The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades.
The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Designs and configurations</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical Tool</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Slide Mode Control</subject><subject>Slide Mode Controller</subject><subject>Sliding Mode</subject><subject>State Trajectory</subject><subject>Statistics</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>3540776443</isbn><isbn>9783540776444</isbn><isbn>3540776532</isbn><isbn>9783540776536</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kElPwzAQhc0qSukv4JILNwzeknG4VWWVWnGgnC3HSxtI4xCHA_8et1TMZTTz5j2NPoQuKbmhhMBtCRJznAuCAYqc40LlB-icp8VuZodoRAsKuCxKdvQvCMGP0Sj5cywFF6doxICxUkpKztAkxg-SitOSETZC07emtnW7yhbBumwW2qEPzV220MPabfRQG91kyxCaeJ3du1iv2ky3Npt2XZOkoQ5tvEAnXjfRTfZ9jN4fH5azZzx_fXqZTefYcEYG7K3xXlOwFQjHpDCF4LoqpJBOWGGBVA5yCrRiIEAbkFaSvGLel9b6ylo-Rld_uZ2O6Svf69bUUXV9vdH9j2KE5yCYSHf07y4mqV25XlUhfEZFidpCVQmq4iqhUjuIKkFNHrbP7sPXt4uDcluTcQmHbsxad4Pro-KkkMCpKlXCyX8Bgv109w</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Morse, A. Stephen</creator><creator>Sontag, Eduardo D</creator><creator>Sussmann, Hector J</creator><creator>Utkin, Vadim I</creator><creator>Agrachev, Andrei A</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2008</creationdate><title>Sliding Mode Control: Mathematical Tools, Design and Applications</title><author>Morse, A. Stephen ; Sontag, Eduardo D ; Sussmann, Hector J ; Utkin, Vadim I ; Agrachev, Andrei A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-fdcffa17db74e284c643ab6848e4d4d70be75171b2747ac78d805b2ff9ddfbdd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Designs and configurations</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical Tool</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Slide Mode Control</topic><topic>Slide Mode Controller</topic><topic>Sliding Mode</topic><topic>State Trajectory</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morse, A. Stephen</creatorcontrib><creatorcontrib>Sontag, Eduardo D</creatorcontrib><creatorcontrib>Sussmann, Hector J</creatorcontrib><creatorcontrib>Utkin, Vadim I</creatorcontrib><creatorcontrib>Agrachev, Andrei A</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morse, A. Stephen</au><au>Sontag, Eduardo D</au><au>Sussmann, Hector J</au><au>Utkin, Vadim I</au><au>Agrachev, Andrei A</au><au>Stefani, Gianna</au><au>Nistri, Paolo</au><au>Nistri, Paolo</au><au>Stefani, Gianna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sliding Mode Control: Mathematical Tools, Design and Applications</atitle><btitle>Lecture notes in mathematics</btitle><date>2008</date><risdate>2008</risdate><spage>289</spage><epage>347</epage><pages>289-347</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>3540776443</isbn><isbn>9783540776444</isbn><eisbn>3540776532</eisbn><eisbn>9783540776536</eisbn><coden>LNMAA2</coden><abstract>The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades.
The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-77653-6_5</doi><oclcid>272298810</oclcid><tpages>59</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | Lecture notes in mathematics, 2008, p.289-347 |
issn | 0075-8434 1617-9692 |
language | eng |
recordid | cdi_pascalfrancis_primary_20357424 |
source | Springer Books |
subjects | Combinatorics Combinatorics. Ordered structures Designs and configurations Exact sciences and technology Experimental design General mathematics General, history and biography Mathematical Tool Mathematics Probability and statistics Sciences and techniques of general use Slide Mode Control Slide Mode Controller Sliding Mode State Trajectory Statistics |
title | Sliding Mode Control: Mathematical Tools, Design and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sliding%20Mode%20Control:%20Mathematical%20Tools,%20Design%20and%20Applications&rft.btitle=Lecture%20notes%20in%20mathematics&rft.au=Morse,%20A.%20Stephen&rft.date=2008&rft.spage=289&rft.epage=347&rft.pages=289-347&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=3540776443&rft.isbn_list=9783540776444&rft.coden=LNMAA2&rft_id=info:doi/10.1007/978-3-540-77653-6_5&rft_dat=%3Cproquest_pasca%3EEBC3068731_9_298%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540776532&rft.eisbn_list=9783540776536&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3068731_9_298&rft_id=info:pmid/&rfr_iscdi=true |