Sliding Mode Control: Mathematical Tools, Design and Applications

The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the slidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morse, A. Stephen, Sontag, Eduardo D, Sussmann, Hector J, Utkin, Vadim I, Agrachev, Andrei A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue
container_start_page 289
container_title
container_volume
creator Morse, A. Stephen
Sontag, Eduardo D
Sussmann, Hector J
Utkin, Vadim I
Agrachev, Andrei A
description The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades. The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control.
doi_str_mv 10.1007/978-3-540-77653-6_5
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20357424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3068731_9_298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-fdcffa17db74e284c643ab6848e4d4d70be75171b2747ac78d805b2ff9ddfbdd3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhc0qSukv4JILNwzeknG4VWWVWnGgnC3HSxtI4xCHA_8et1TMZTTz5j2NPoQuKbmhhMBtCRJznAuCAYqc40LlB-icp8VuZodoRAsKuCxKdvQvCMGP0Sj5cywFF6doxICxUkpKztAkxg-SitOSETZC07emtnW7yhbBumwW2qEPzV220MPabfRQG91kyxCaeJ3du1iv2ky3Npt2XZOkoQ5tvEAnXjfRTfZ9jN4fH5azZzx_fXqZTefYcEYG7K3xXlOwFQjHpDCF4LoqpJBOWGGBVA5yCrRiIEAbkFaSvGLel9b6ylo-Rld_uZ2O6Svf69bUUXV9vdH9j2KE5yCYSHf07y4mqV25XlUhfEZFidpCVQmq4iqhUjuIKkFNHrbP7sPXt4uDcluTcQmHbsxad4Pro-KkkMCpKlXCyX8Bgv109w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>EBC3068731_9_298</pqid></control><display><type>conference_proceeding</type><title>Sliding Mode Control: Mathematical Tools, Design and Applications</title><source>Springer Books</source><creator>Morse, A. Stephen ; Sontag, Eduardo D ; Sussmann, Hector J ; Utkin, Vadim I ; Agrachev, Andrei A</creator><contributor>Stefani, Gianna ; Nistri, Paolo ; Nistri, Paolo ; Stefani, Gianna</contributor><creatorcontrib>Morse, A. Stephen ; Sontag, Eduardo D ; Sussmann, Hector J ; Utkin, Vadim I ; Agrachev, Andrei A ; Stefani, Gianna ; Nistri, Paolo ; Nistri, Paolo ; Stefani, Gianna</creatorcontrib><description>The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades. The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540776443</identifier><identifier>ISBN: 9783540776444</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3540776532</identifier><identifier>EISBN: 9783540776536</identifier><identifier>DOI: 10.1007/978-3-540-77653-6_5</identifier><identifier>OCLC: 272298810</identifier><identifier>CODEN: LNMAA2</identifier><identifier>LCCallNum: Q295</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Designs and configurations ; Exact sciences and technology ; Experimental design ; General mathematics ; General, history and biography ; Mathematical Tool ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Slide Mode Control ; Slide Mode Controller ; Sliding Mode ; State Trajectory ; Statistics</subject><ispartof>Lecture notes in mathematics, 2008, p.289-347</ispartof><rights>Springer-Verlag Berlin Heidelberg 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-fdcffa17db74e284c643ab6848e4d4d70be75171b2747ac78d805b2ff9ddfbdd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3068731-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-77653-6_5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-77653-6_5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20357424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Stefani, Gianna</contributor><contributor>Nistri, Paolo</contributor><contributor>Nistri, Paolo</contributor><contributor>Stefani, Gianna</contributor><creatorcontrib>Morse, A. Stephen</creatorcontrib><creatorcontrib>Sontag, Eduardo D</creatorcontrib><creatorcontrib>Sussmann, Hector J</creatorcontrib><creatorcontrib>Utkin, Vadim I</creatorcontrib><creatorcontrib>Agrachev, Andrei A</creatorcontrib><title>Sliding Mode Control: Mathematical Tools, Design and Applications</title><title>Lecture notes in mathematics</title><description>The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades. The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Designs and configurations</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical Tool</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Slide Mode Control</subject><subject>Slide Mode Controller</subject><subject>Sliding Mode</subject><subject>State Trajectory</subject><subject>Statistics</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>3540776443</isbn><isbn>9783540776444</isbn><isbn>3540776532</isbn><isbn>9783540776536</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kElPwzAQhc0qSukv4JILNwzeknG4VWWVWnGgnC3HSxtI4xCHA_8et1TMZTTz5j2NPoQuKbmhhMBtCRJznAuCAYqc40LlB-icp8VuZodoRAsKuCxKdvQvCMGP0Sj5cywFF6doxICxUkpKztAkxg-SitOSETZC07emtnW7yhbBumwW2qEPzV220MPabfRQG91kyxCaeJ3du1iv2ky3Npt2XZOkoQ5tvEAnXjfRTfZ9jN4fH5azZzx_fXqZTefYcEYG7K3xXlOwFQjHpDCF4LoqpJBOWGGBVA5yCrRiIEAbkFaSvGLel9b6ylo-Rld_uZ2O6Svf69bUUXV9vdH9j2KE5yCYSHf07y4mqV25XlUhfEZFidpCVQmq4iqhUjuIKkFNHrbP7sPXt4uDcluTcQmHbsxad4Pro-KkkMCpKlXCyX8Bgv109w</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Morse, A. Stephen</creator><creator>Sontag, Eduardo D</creator><creator>Sussmann, Hector J</creator><creator>Utkin, Vadim I</creator><creator>Agrachev, Andrei A</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2008</creationdate><title>Sliding Mode Control: Mathematical Tools, Design and Applications</title><author>Morse, A. Stephen ; Sontag, Eduardo D ; Sussmann, Hector J ; Utkin, Vadim I ; Agrachev, Andrei A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-fdcffa17db74e284c643ab6848e4d4d70be75171b2747ac78d805b2ff9ddfbdd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Designs and configurations</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical Tool</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Slide Mode Control</topic><topic>Slide Mode Controller</topic><topic>Sliding Mode</topic><topic>State Trajectory</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morse, A. Stephen</creatorcontrib><creatorcontrib>Sontag, Eduardo D</creatorcontrib><creatorcontrib>Sussmann, Hector J</creatorcontrib><creatorcontrib>Utkin, Vadim I</creatorcontrib><creatorcontrib>Agrachev, Andrei A</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morse, A. Stephen</au><au>Sontag, Eduardo D</au><au>Sussmann, Hector J</au><au>Utkin, Vadim I</au><au>Agrachev, Andrei A</au><au>Stefani, Gianna</au><au>Nistri, Paolo</au><au>Nistri, Paolo</au><au>Stefani, Gianna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sliding Mode Control: Mathematical Tools, Design and Applications</atitle><btitle>Lecture notes in mathematics</btitle><date>2008</date><risdate>2008</risdate><spage>289</spage><epage>347</epage><pages>289-347</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>3540776443</isbn><isbn>9783540776444</isbn><eisbn>3540776532</eisbn><eisbn>9783540776536</eisbn><coden>LNMAA2</coden><abstract>The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex high-order nonlinear dynamic plant operating under uncertainty conditions. The research in this area were initiated in the former Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from the international control community within the last two decades. The major advantage of sliding mode is low sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control actions are discontinuous state functions which may easily be implemented by conventional power converters with “on-off” as the only admissible operation mode. Due to these properties the intensity of the research at many scientific centers of industry and universities is maintained at high level, and sliding mode control has been proved to be applicable to a wide range of problems in robotics, electric drives and generators, process control, vehicle and motion control.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-77653-6_5</doi><oclcid>272298810</oclcid><tpages>59</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof Lecture notes in mathematics, 2008, p.289-347
issn 0075-8434
1617-9692
language eng
recordid cdi_pascalfrancis_primary_20357424
source Springer Books
subjects Combinatorics
Combinatorics. Ordered structures
Designs and configurations
Exact sciences and technology
Experimental design
General mathematics
General, history and biography
Mathematical Tool
Mathematics
Probability and statistics
Sciences and techniques of general use
Slide Mode Control
Slide Mode Controller
Sliding Mode
State Trajectory
Statistics
title Sliding Mode Control: Mathematical Tools, Design and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sliding%20Mode%20Control:%20Mathematical%20Tools,%20Design%20and%20Applications&rft.btitle=Lecture%20notes%20in%20mathematics&rft.au=Morse,%20A.%20Stephen&rft.date=2008&rft.spage=289&rft.epage=347&rft.pages=289-347&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=3540776443&rft.isbn_list=9783540776444&rft.coden=LNMAA2&rft_id=info:doi/10.1007/978-3-540-77653-6_5&rft_dat=%3Cproquest_pasca%3EEBC3068731_9_298%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540776532&rft.eisbn_list=9783540776536&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3068731_9_298&rft_id=info:pmid/&rfr_iscdi=true