Only 'Free' Measures Are Admissable on F(S) When the Inner Product Space S Is Incomplete
Using elementary arguments and without having to recall the Gleason Theorem, we prove that the existence of a nonsingular measure on the lattice of orthogonally closed subspaces of an inner product space S is a sufficient (and of course, a necessary) condition for S to be a Hilbert space.
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2008-03, Vol.136 (3), p.919-922 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using elementary arguments and without having to recall the Gleason Theorem, we prove that the existence of a nonsingular measure on the lattice of orthogonally closed subspaces of an inner product space S is a sufficient (and of course, a necessary) condition for S to be a Hilbert space. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-07-08982-4 |