Only 'Free' Measures Are Admissable on F(S) When the Inner Product Space S Is Incomplete

Using elementary arguments and without having to recall the Gleason Theorem, we prove that the existence of a nonsingular measure on the lattice of orthogonally closed subspaces of an inner product space S is a sufficient (and of course, a necessary) condition for S to be a Hilbert space.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2008-03, Vol.136 (3), p.919-922
Hauptverfasser: Buhagiar, D., Chetcuti, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using elementary arguments and without having to recall the Gleason Theorem, we prove that the existence of a nonsingular measure on the lattice of orthogonally closed subspaces of an inner product space S is a sufficient (and of course, a necessary) condition for S to be a Hilbert space.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-07-08982-4