Operational Voltage Reduction of Flash Memory Using High- \kappa Composite Tunnel Barriers

We explore the performance of symmetric (low-k/high-k/low-k) and asymmetric (low-k/high-k) composite tunnel barriers with conventional Flash constraints of retention, erase, read and program disturbs. Simulations, including five different high-k materials, were performed under these criteria to mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2008-03, Vol.29 (3), p.252-254
Hauptverfasser: Verma, S., Pop, E., Kapur, P., Parat, K., Saraswat, K.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 3
container_start_page 252
container_title IEEE electron device letters
container_volume 29
creator Verma, S.
Pop, E.
Kapur, P.
Parat, K.
Saraswat, K.C.
description We explore the performance of symmetric (low-k/high-k/low-k) and asymmetric (low-k/high-k) composite tunnel barriers with conventional Flash constraints of retention, erase, read and program disturbs. Simulations, including five different high-k materials, were performed under these criteria to minimize the programming voltage V prog . Among all constraints, we find read disturb to be the most restrictive both in terms of lowering V prog and choosing the high-k materials for such stacks. Furthermore, the symmetric barrier stack is found to be more promising versus the asymmetric barrier stack. For the common read disturb voltages of 2.5 and 3.6 V, the lowest V prog of ~ 4 and 5 V, respectively (relative to the floating gate), are obtained. In addition, the maximum required operating Flash voltage is found to be 30% -40% lower than the prevalent voltages.
doi_str_mv 10.1109/LED.2007.915376
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_20145322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4455686</ieee_id><sourcerecordid>20145322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5b790f8fb514033cbb73ed2385eef1865fb403ddb7b3108a230e51478b1548db3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKdnD15y8dgtaZImO-rcnDAZyOZBhJK0L1u0a0rSHfbf21HZ6cHvfb_H40PonpIRpWQyXs5eRikhcjShgsnsAg2oECohImOXaEAkpwmjJLtGNzH-EEI5l3yAvlYNBN06X-sKf_qq1VvAH1AeilOGvcXzSscdfoe9D0e8ia7e4oXb7hL8_aubRuOp3zc-uhbw-lDXUOFnHYKDEG_RldVVhLv_OUSb-Ww9XSTL1evb9GmZFEzINhFGTohV1gjKCWOFMZJBmTIlACxVmbCmy8vSSNP9r3TKCHSoVIYKrkrDhmjc3y2CjzGAzZvg9jocc0ryk5q8U5Of1OS9mq7x2DcaHQtd2aDrwsVzLe3kCJamHffQcw4AzmvOhchUxv4AqPNsVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Operational Voltage Reduction of Flash Memory Using High- \kappa Composite Tunnel Barriers</title><source>IEEE Electronic Library (IEL)</source><creator>Verma, S. ; Pop, E. ; Kapur, P. ; Parat, K. ; Saraswat, K.C.</creator><creatorcontrib>Verma, S. ; Pop, E. ; Kapur, P. ; Parat, K. ; Saraswat, K.C.</creatorcontrib><description>We explore the performance of symmetric (low-k/high-k/low-k) and asymmetric (low-k/high-k) composite tunnel barriers with conventional Flash constraints of retention, erase, read and program disturbs. Simulations, including five different high-k materials, were performed under these criteria to minimize the programming voltage V prog . Among all constraints, we find read disturb to be the most restrictive both in terms of lowering V prog and choosing the high-k materials for such stacks. Furthermore, the symmetric barrier stack is found to be more promising versus the asymmetric barrier stack. For the common read disturb voltages of 2.5 and 3.6 V, the lowest V prog of ~ 4 and 5 V, respectively (relative to the floating gate), are obtained. In addition, the maximum required operating Flash voltage is found to be 30% -40% lower than the prevalent voltages.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2007.915376</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Composite materials ; Design optimization ; Design. Technologies. Operation analysis. Testing ; Dielectric materials ; Electronics ; Electrons ; Exact sciences and technology ; Flash memory ; Flash operating constraints ; high- kappa dielectrics ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Materials science and technology ; Memory management ; Nonvolatile memory ; program disturb ; read disturb ; retention ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; tunnel barrier engineering ; Voltage</subject><ispartof>IEEE electron device letters, 2008-03, Vol.29 (3), p.252-254</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5b790f8fb514033cbb73ed2385eef1865fb403ddb7b3108a230e51478b1548db3</citedby><cites>FETCH-LOGICAL-c357t-5b790f8fb514033cbb73ed2385eef1865fb403ddb7b3108a230e51478b1548db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4455686$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4455686$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20145322$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, S.</creatorcontrib><creatorcontrib>Pop, E.</creatorcontrib><creatorcontrib>Kapur, P.</creatorcontrib><creatorcontrib>Parat, K.</creatorcontrib><creatorcontrib>Saraswat, K.C.</creatorcontrib><title>Operational Voltage Reduction of Flash Memory Using High- \kappa Composite Tunnel Barriers</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We explore the performance of symmetric (low-k/high-k/low-k) and asymmetric (low-k/high-k) composite tunnel barriers with conventional Flash constraints of retention, erase, read and program disturbs. Simulations, including five different high-k materials, were performed under these criteria to minimize the programming voltage V prog . Among all constraints, we find read disturb to be the most restrictive both in terms of lowering V prog and choosing the high-k materials for such stacks. Furthermore, the symmetric barrier stack is found to be more promising versus the asymmetric barrier stack. For the common read disturb voltages of 2.5 and 3.6 V, the lowest V prog of ~ 4 and 5 V, respectively (relative to the floating gate), are obtained. In addition, the maximum required operating Flash voltage is found to be 30% -40% lower than the prevalent voltages.</description><subject>Applied sciences</subject><subject>Composite materials</subject><subject>Design optimization</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dielectric materials</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Flash memory</subject><subject>Flash operating constraints</subject><subject>high- kappa dielectrics</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Materials science and technology</subject><subject>Memory management</subject><subject>Nonvolatile memory</subject><subject>program disturb</subject><subject>read disturb</subject><subject>retention</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>tunnel barrier engineering</subject><subject>Voltage</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKdnD15y8dgtaZImO-rcnDAZyOZBhJK0L1u0a0rSHfbf21HZ6cHvfb_H40PonpIRpWQyXs5eRikhcjShgsnsAg2oECohImOXaEAkpwmjJLtGNzH-EEI5l3yAvlYNBN06X-sKf_qq1VvAH1AeilOGvcXzSscdfoe9D0e8ia7e4oXb7hL8_aubRuOp3zc-uhbw-lDXUOFnHYKDEG_RldVVhLv_OUSb-Ww9XSTL1evb9GmZFEzINhFGTohV1gjKCWOFMZJBmTIlACxVmbCmy8vSSNP9r3TKCHSoVIYKrkrDhmjc3y2CjzGAzZvg9jocc0ryk5q8U5Of1OS9mq7x2DcaHQtd2aDrwsVzLe3kCJamHffQcw4AzmvOhchUxv4AqPNsVg</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Verma, S.</creator><creator>Pop, E.</creator><creator>Kapur, P.</creator><creator>Parat, K.</creator><creator>Saraswat, K.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080301</creationdate><title>Operational Voltage Reduction of Flash Memory Using High- \kappa Composite Tunnel Barriers</title><author>Verma, S. ; Pop, E. ; Kapur, P. ; Parat, K. ; Saraswat, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5b790f8fb514033cbb73ed2385eef1865fb403ddb7b3108a230e51478b1548db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Composite materials</topic><topic>Design optimization</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dielectric materials</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Flash memory</topic><topic>Flash operating constraints</topic><topic>high- kappa dielectrics</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Materials science and technology</topic><topic>Memory management</topic><topic>Nonvolatile memory</topic><topic>program disturb</topic><topic>read disturb</topic><topic>retention</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>tunnel barrier engineering</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, S.</creatorcontrib><creatorcontrib>Pop, E.</creatorcontrib><creatorcontrib>Kapur, P.</creatorcontrib><creatorcontrib>Parat, K.</creatorcontrib><creatorcontrib>Saraswat, K.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verma, S.</au><au>Pop, E.</au><au>Kapur, P.</au><au>Parat, K.</au><au>Saraswat, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational Voltage Reduction of Flash Memory Using High- \kappa Composite Tunnel Barriers</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>29</volume><issue>3</issue><spage>252</spage><epage>254</epage><pages>252-254</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We explore the performance of symmetric (low-k/high-k/low-k) and asymmetric (low-k/high-k) composite tunnel barriers with conventional Flash constraints of retention, erase, read and program disturbs. Simulations, including five different high-k materials, were performed under these criteria to minimize the programming voltage V prog . Among all constraints, we find read disturb to be the most restrictive both in terms of lowering V prog and choosing the high-k materials for such stacks. Furthermore, the symmetric barrier stack is found to be more promising versus the asymmetric barrier stack. For the common read disturb voltages of 2.5 and 3.6 V, the lowest V prog of ~ 4 and 5 V, respectively (relative to the floating gate), are obtained. In addition, the maximum required operating Flash voltage is found to be 30% -40% lower than the prevalent voltages.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2007.915376</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2008-03, Vol.29 (3), p.252-254
issn 0741-3106
1558-0563
language eng
recordid cdi_pascalfrancis_primary_20145322
source IEEE Electronic Library (IEL)
subjects Applied sciences
Composite materials
Design optimization
Design. Technologies. Operation analysis. Testing
Dielectric materials
Electronics
Electrons
Exact sciences and technology
Flash memory
Flash operating constraints
high- kappa dielectrics
Integrated circuits
Integrated circuits by function (including memories and processors)
Materials science and technology
Memory management
Nonvolatile memory
program disturb
read disturb
retention
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
tunnel barrier engineering
Voltage
title Operational Voltage Reduction of Flash Memory Using High- \kappa Composite Tunnel Barriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20Voltage%20Reduction%20of%20Flash%20Memory%20Using%20High-%20%5Ckappa%20Composite%20Tunnel%20Barriers&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Verma,%20S.&rft.date=2008-03-01&rft.volume=29&rft.issue=3&rft.spage=252&rft.epage=254&rft.pages=252-254&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2007.915376&rft_dat=%3Cpascalfrancis_RIE%3E20145322%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4455686&rfr_iscdi=true