Cluster-Based Patent Retrieval Using International Patent Classification System

A patent collection provides a great test-bed for cluster-based information retrieval. International Patent Classification (IPC) system provides a hierarchical taxonomy with 5 levels of specificity. We regard IPC codes of patent applications as cluster information, manually assigned by patent office...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Jungi, Kang, In-Su, Lee, Jong-Hyeok
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue
container_start_page 205
container_title
container_volume
creator Kim, Jungi
Kang, In-Su
Lee, Jong-Hyeok
description A patent collection provides a great test-bed for cluster-based information retrieval. International Patent Classification (IPC) system provides a hierarchical taxonomy with 5 levels of specificity. We regard IPC codes of patent applications as cluster information, manually assigned by patent officers according to their subjects. Such manual cluster provides advantages over auto-matically built clusters using document term similarities. There are previous researches that successfully apply cluster-based retrieval models using language modeling. We develop cluster-based language models that employ advantages of having manually clustered documents.
doi_str_mv 10.1007/11940098_22
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_20127840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20127840</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1342-8968841b7bd3849afee6aceea29abd69b12c2e572c82e370747811148337fd043</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LopSe-AO5cOAQ2LXd2D5CxKNSpSKgEjdrkziVIU2rOEXqv8fQSrCXlWa-nZWGsQuEawRQN4hGAhhtOT9gZ2IsQZos0_qQDTBDTIWQ5ujPUO_HbAACeGqUFKdsFMIHxBEYb8YDNsubTehdl95RcFXyTL1r--TF9Z13X9Qk8-DbRTJpI9JS71dt1PZQ3lAIvvblr568bmPO8pyd1NQEN9rvIZs_3L_lT-l09jjJb6fpGoXkqTbxvcRCFZXQ0lDtXEalc8QNFVVmCuQld2PFS82dUKCk0ogotRCqrkCKIbvc5a4plNTUHbWlD3bd-SV1W8sBudISIne140K02oXrbLFafQaLYH_qtP_qFN-Lf2IM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cluster-Based Patent Retrieval Using International Patent Classification System</title><source>Springer Books</source><creator>Kim, Jungi ; Kang, In-Su ; Lee, Jong-Hyeok</creator><contributor>Matsumoto, Yuji ; Sproat, Richard W. ; Zhang, Min ; Wong, Kam-Fai</contributor><creatorcontrib>Kim, Jungi ; Kang, In-Su ; Lee, Jong-Hyeok ; Matsumoto, Yuji ; Sproat, Richard W. ; Zhang, Min ; Wong, Kam-Fai</creatorcontrib><description>A patent collection provides a great test-bed for cluster-based information retrieval. International Patent Classification (IPC) system provides a hierarchical taxonomy with 5 levels of specificity. We regard IPC codes of patent applications as cluster information, manually assigned by patent officers according to their subjects. Such manual cluster provides advantages over auto-matically built clusters using document term similarities. There are previous researches that successfully apply cluster-based retrieval models using language modeling. We develop cluster-based language models that employ advantages of having manually clustered documents.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354049667X</identifier><identifier>ISBN: 9783540496670</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540496688</identifier><identifier>EISBN: 9783540496687</identifier><identifier>DOI: 10.1007/11940098_22</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; cluster-based retrieval ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; inter-national patent classification ; invalidity search ; Memory organisation. Data processing ; patent retrieval ; Software ; Speech and sound recognition and synthesis. Linguistics</subject><ispartof>Computer Processing of Oriental Languages. Beyond the Orient: The Research Challenges Ahead, 2006, p.205-212</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11940098_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11940098_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20127840$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Matsumoto, Yuji</contributor><contributor>Sproat, Richard W.</contributor><contributor>Zhang, Min</contributor><contributor>Wong, Kam-Fai</contributor><creatorcontrib>Kim, Jungi</creatorcontrib><creatorcontrib>Kang, In-Su</creatorcontrib><creatorcontrib>Lee, Jong-Hyeok</creatorcontrib><title>Cluster-Based Patent Retrieval Using International Patent Classification System</title><title>Computer Processing of Oriental Languages. Beyond the Orient: The Research Challenges Ahead</title><description>A patent collection provides a great test-bed for cluster-based information retrieval. International Patent Classification (IPC) system provides a hierarchical taxonomy with 5 levels of specificity. We regard IPC codes of patent applications as cluster information, manually assigned by patent officers according to their subjects. Such manual cluster provides advantages over auto-matically built clusters using document term similarities. There are previous researches that successfully apply cluster-based retrieval models using language modeling. We develop cluster-based language models that employ advantages of having manually clustered documents.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>cluster-based retrieval</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>inter-national patent classification</subject><subject>invalidity search</subject><subject>Memory organisation. Data processing</subject><subject>patent retrieval</subject><subject>Software</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354049667X</isbn><isbn>9783540496670</isbn><isbn>3540496688</isbn><isbn>9783540496687</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1LopSe-AO5cOAQ2LXd2D5CxKNSpSKgEjdrkziVIU2rOEXqv8fQSrCXlWa-nZWGsQuEawRQN4hGAhhtOT9gZ2IsQZos0_qQDTBDTIWQ5ujPUO_HbAACeGqUFKdsFMIHxBEYb8YDNsubTehdl95RcFXyTL1r--TF9Z13X9Qk8-DbRTJpI9JS71dt1PZQ3lAIvvblr568bmPO8pyd1NQEN9rvIZs_3L_lT-l09jjJb6fpGoXkqTbxvcRCFZXQ0lDtXEalc8QNFVVmCuQld2PFS82dUKCk0ogotRCqrkCKIbvc5a4plNTUHbWlD3bd-SV1W8sBudISIne140K02oXrbLFafQaLYH_qtP_qFN-Lf2IM</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kim, Jungi</creator><creator>Kang, In-Su</creator><creator>Lee, Jong-Hyeok</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Cluster-Based Patent Retrieval Using International Patent Classification System</title><author>Kim, Jungi ; Kang, In-Su ; Lee, Jong-Hyeok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1342-8968841b7bd3849afee6aceea29abd69b12c2e572c82e370747811148337fd043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>cluster-based retrieval</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>inter-national patent classification</topic><topic>invalidity search</topic><topic>Memory organisation. Data processing</topic><topic>patent retrieval</topic><topic>Software</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jungi</creatorcontrib><creatorcontrib>Kang, In-Su</creatorcontrib><creatorcontrib>Lee, Jong-Hyeok</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jungi</au><au>Kang, In-Su</au><au>Lee, Jong-Hyeok</au><au>Matsumoto, Yuji</au><au>Sproat, Richard W.</au><au>Zhang, Min</au><au>Wong, Kam-Fai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cluster-Based Patent Retrieval Using International Patent Classification System</atitle><btitle>Computer Processing of Oriental Languages. Beyond the Orient: The Research Challenges Ahead</btitle><date>2006</date><risdate>2006</risdate><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354049667X</isbn><isbn>9783540496670</isbn><eisbn>3540496688</eisbn><eisbn>9783540496687</eisbn><abstract>A patent collection provides a great test-bed for cluster-based information retrieval. International Patent Classification (IPC) system provides a hierarchical taxonomy with 5 levels of specificity. We regard IPC codes of patent applications as cluster information, manually assigned by patent officers according to their subjects. Such manual cluster provides advantages over auto-matically built clusters using document term similarities. There are previous researches that successfully apply cluster-based retrieval models using language modeling. We develop cluster-based language models that employ advantages of having manually clustered documents.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11940098_22</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Processing of Oriental Languages. Beyond the Orient: The Research Challenges Ahead, 2006, p.205-212
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_20127840
source Springer Books
subjects Applied sciences
Artificial intelligence
cluster-based retrieval
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
inter-national patent classification
invalidity search
Memory organisation. Data processing
patent retrieval
Software
Speech and sound recognition and synthesis. Linguistics
title Cluster-Based Patent Retrieval Using International Patent Classification System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cluster-Based%20Patent%20Retrieval%20Using%20International%20Patent%20Classification%20System&rft.btitle=Computer%20Processing%20of%20Oriental%20Languages.%20Beyond%20the%20Orient:%20The%20Research%20Challenges%20Ahead&rft.au=Kim,%20Jungi&rft.date=2006&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354049667X&rft.isbn_list=9783540496670&rft_id=info:doi/10.1007/11940098_22&rft_dat=%3Cpascalfrancis_sprin%3E20127840%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540496688&rft.eisbn_list=9783540496687&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true