Face Authentication Using Adapted Local Binary Pattern Histograms
In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic m...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | |
container_start_page | 321 |
container_title | |
container_volume | |
creator | Rodriguez, Yann Marcel, Sébastien |
description | In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task. |
doi_str_mv | 10.1007/11744085_25 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_20046269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20046269</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-82d966b51a32fcbff9a88840a16ef827de19fa503c43b088a519b5534809c4333</originalsourceid><addsrcrecordid>eNpVUD1PwzAUNF8SVenEH8jCwBB49rMdewyIUqRKMNA5ekmcYmidKDYD_56gMsAtJ92dTqdj7JLDDQcobjkvpASjKqGO2MIWBpUERIMWjtmMa85zRGlP_nkGT9kMEERuC4nnbBHjO0xArq2AGSuX1Lis_ExvLiTfUPJ9yDbRh21WtjQk12brvqFdducDjV_ZC6XkxpCtfEz9dqR9vGBnHe2iW_zynG2WD6_3q3z9_Ph0X67zQXCbciNaq3WtOKHomrrrLBljJBDXrjOiaB23HSnARmINxpDitlYKpQE7SYhzdnXoHShOg7qRQuNjNYx-Pw2rBIDUQtspd33IxckKWzdWdd9_xIpD9XNj9edG_AZYl11a</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face Authentication Using Adapted Local Binary Pattern Histograms</title><source>Springer Books</source><creator>Rodriguez, Yann ; Marcel, Sébastien</creator><contributor>Bischof, Horst ; Pinz, Axel ; Leonardis, Aleš</contributor><creatorcontrib>Rodriguez, Yann ; Marcel, Sébastien ; Bischof, Horst ; Pinz, Axel ; Leonardis, Aleš</creatorcontrib><description>In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540338383</identifier><identifier>ISBN: 3540338381</identifier><identifier>ISBN: 9783540338321</identifier><identifier>ISBN: 3540338322</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540338390</identifier><identifier>EISBN: 354033839X</identifier><identifier>DOI: 10.1007/11744085_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Face Image ; Local Binary Pattern ; Local Binary Pattern Code ; Local Binary Pattern Feature ; Local Binary Pattern Operator ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Computer Vision – ECCV 2006, 2006, p.321-332</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11744085_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11744085_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20046269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bischof, Horst</contributor><contributor>Pinz, Axel</contributor><contributor>Leonardis, Aleš</contributor><creatorcontrib>Rodriguez, Yann</creatorcontrib><creatorcontrib>Marcel, Sébastien</creatorcontrib><title>Face Authentication Using Adapted Local Binary Pattern Histograms</title><title>Computer Vision – ECCV 2006</title><description>In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face Image</subject><subject>Local Binary Pattern</subject><subject>Local Binary Pattern Code</subject><subject>Local Binary Pattern Feature</subject><subject>Local Binary Pattern Operator</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540338383</isbn><isbn>3540338381</isbn><isbn>9783540338321</isbn><isbn>3540338322</isbn><isbn>9783540338390</isbn><isbn>354033839X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUD1PwzAUNF8SVenEH8jCwBB49rMdewyIUqRKMNA5ekmcYmidKDYD_56gMsAtJ92dTqdj7JLDDQcobjkvpASjKqGO2MIWBpUERIMWjtmMa85zRGlP_nkGT9kMEERuC4nnbBHjO0xArq2AGSuX1Lis_ExvLiTfUPJ9yDbRh21WtjQk12brvqFdducDjV_ZC6XkxpCtfEz9dqR9vGBnHe2iW_zynG2WD6_3q3z9_Ph0X67zQXCbciNaq3WtOKHomrrrLBljJBDXrjOiaB23HSnARmINxpDitlYKpQE7SYhzdnXoHShOg7qRQuNjNYx-Pw2rBIDUQtspd33IxckKWzdWdd9_xIpD9XNj9edG_AZYl11a</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Rodriguez, Yann</creator><creator>Marcel, Sébastien</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Face Authentication Using Adapted Local Binary Pattern Histograms</title><author>Rodriguez, Yann ; Marcel, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-82d966b51a32fcbff9a88840a16ef827de19fa503c43b088a519b5534809c4333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face Image</topic><topic>Local Binary Pattern</topic><topic>Local Binary Pattern Code</topic><topic>Local Binary Pattern Feature</topic><topic>Local Binary Pattern Operator</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Yann</creatorcontrib><creatorcontrib>Marcel, Sébastien</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Yann</au><au>Marcel, Sébastien</au><au>Bischof, Horst</au><au>Pinz, Axel</au><au>Leonardis, Aleš</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face Authentication Using Adapted Local Binary Pattern Histograms</atitle><btitle>Computer Vision – ECCV 2006</btitle><date>2006</date><risdate>2006</risdate><spage>321</spage><epage>332</epage><pages>321-332</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540338383</isbn><isbn>3540338381</isbn><isbn>9783540338321</isbn><isbn>3540338322</isbn><eisbn>9783540338390</eisbn><eisbn>354033839X</eisbn><abstract>In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11744085_25</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Vision – ECCV 2006, 2006, p.321-332 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_20046269 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Face Image Local Binary Pattern Local Binary Pattern Code Local Binary Pattern Feature Local Binary Pattern Operator Pattern recognition. Digital image processing. Computational geometry |
title | Face Authentication Using Adapted Local Binary Pattern Histograms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20Authentication%20Using%20Adapted%20Local%20Binary%20Pattern%20Histograms&rft.btitle=Computer%20Vision%20%E2%80%93%20ECCV%202006&rft.au=Rodriguez,%20Yann&rft.date=2006&rft.spage=321&rft.epage=332&rft.pages=321-332&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540338383&rft.isbn_list=3540338381&rft.isbn_list=9783540338321&rft.isbn_list=3540338322&rft_id=info:doi/10.1007/11744085_25&rft_dat=%3Cpascalfrancis_sprin%3E20046269%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540338390&rft.eisbn_list=354033839X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |