Face Authentication Using Adapted Local Binary Pattern Histograms

In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rodriguez, Yann, Marcel, Sébastien
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue
container_start_page 321
container_title
container_volume
creator Rodriguez, Yann
Marcel, Sébastien
description In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.
doi_str_mv 10.1007/11744085_25
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_20046269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20046269</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-82d966b51a32fcbff9a88840a16ef827de19fa503c43b088a519b5534809c4333</originalsourceid><addsrcrecordid>eNpVUD1PwzAUNF8SVenEH8jCwBB49rMdewyIUqRKMNA5ekmcYmidKDYD_56gMsAtJ92dTqdj7JLDDQcobjkvpASjKqGO2MIWBpUERIMWjtmMa85zRGlP_nkGT9kMEERuC4nnbBHjO0xArq2AGSuX1Lis_ExvLiTfUPJ9yDbRh21WtjQk12brvqFdducDjV_ZC6XkxpCtfEz9dqR9vGBnHe2iW_zynG2WD6_3q3z9_Ph0X67zQXCbciNaq3WtOKHomrrrLBljJBDXrjOiaB23HSnARmINxpDitlYKpQE7SYhzdnXoHShOg7qRQuNjNYx-Pw2rBIDUQtspd33IxckKWzdWdd9_xIpD9XNj9edG_AZYl11a</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face Authentication Using Adapted Local Binary Pattern Histograms</title><source>Springer Books</source><creator>Rodriguez, Yann ; Marcel, Sébastien</creator><contributor>Bischof, Horst ; Pinz, Axel ; Leonardis, Aleš</contributor><creatorcontrib>Rodriguez, Yann ; Marcel, Sébastien ; Bischof, Horst ; Pinz, Axel ; Leonardis, Aleš</creatorcontrib><description>In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540338383</identifier><identifier>ISBN: 3540338381</identifier><identifier>ISBN: 9783540338321</identifier><identifier>ISBN: 3540338322</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540338390</identifier><identifier>EISBN: 354033839X</identifier><identifier>DOI: 10.1007/11744085_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Face Image ; Local Binary Pattern ; Local Binary Pattern Code ; Local Binary Pattern Feature ; Local Binary Pattern Operator ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Computer Vision – ECCV 2006, 2006, p.321-332</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11744085_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11744085_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20046269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bischof, Horst</contributor><contributor>Pinz, Axel</contributor><contributor>Leonardis, Aleš</contributor><creatorcontrib>Rodriguez, Yann</creatorcontrib><creatorcontrib>Marcel, Sébastien</creatorcontrib><title>Face Authentication Using Adapted Local Binary Pattern Histograms</title><title>Computer Vision – ECCV 2006</title><description>In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face Image</subject><subject>Local Binary Pattern</subject><subject>Local Binary Pattern Code</subject><subject>Local Binary Pattern Feature</subject><subject>Local Binary Pattern Operator</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540338383</isbn><isbn>3540338381</isbn><isbn>9783540338321</isbn><isbn>3540338322</isbn><isbn>9783540338390</isbn><isbn>354033839X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUD1PwzAUNF8SVenEH8jCwBB49rMdewyIUqRKMNA5ekmcYmidKDYD_56gMsAtJ92dTqdj7JLDDQcobjkvpASjKqGO2MIWBpUERIMWjtmMa85zRGlP_nkGT9kMEERuC4nnbBHjO0xArq2AGSuX1Lis_ExvLiTfUPJ9yDbRh21WtjQk12brvqFdducDjV_ZC6XkxpCtfEz9dqR9vGBnHe2iW_zynG2WD6_3q3z9_Ph0X67zQXCbciNaq3WtOKHomrrrLBljJBDXrjOiaB23HSnARmINxpDitlYKpQE7SYhzdnXoHShOg7qRQuNjNYx-Pw2rBIDUQtspd33IxckKWzdWdd9_xIpD9XNj9edG_AZYl11a</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Rodriguez, Yann</creator><creator>Marcel, Sébastien</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Face Authentication Using Adapted Local Binary Pattern Histograms</title><author>Rodriguez, Yann ; Marcel, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-82d966b51a32fcbff9a88840a16ef827de19fa503c43b088a519b5534809c4333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face Image</topic><topic>Local Binary Pattern</topic><topic>Local Binary Pattern Code</topic><topic>Local Binary Pattern Feature</topic><topic>Local Binary Pattern Operator</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Yann</creatorcontrib><creatorcontrib>Marcel, Sébastien</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Yann</au><au>Marcel, Sébastien</au><au>Bischof, Horst</au><au>Pinz, Axel</au><au>Leonardis, Aleš</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face Authentication Using Adapted Local Binary Pattern Histograms</atitle><btitle>Computer Vision – ECCV 2006</btitle><date>2006</date><risdate>2006</risdate><spage>321</spage><epage>332</epage><pages>321-332</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540338383</isbn><isbn>3540338381</isbn><isbn>9783540338321</isbn><isbn>3540338322</isbn><eisbn>9783540338390</eisbn><eisbn>354033839X</eisbn><abstract>In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11744085_25</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision – ECCV 2006, 2006, p.321-332
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_20046269
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Face Image
Local Binary Pattern
Local Binary Pattern Code
Local Binary Pattern Feature
Local Binary Pattern Operator
Pattern recognition. Digital image processing. Computational geometry
title Face Authentication Using Adapted Local Binary Pattern Histograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20Authentication%20Using%20Adapted%20Local%20Binary%20Pattern%20Histograms&rft.btitle=Computer%20Vision%20%E2%80%93%20ECCV%202006&rft.au=Rodriguez,%20Yann&rft.date=2006&rft.spage=321&rft.epage=332&rft.pages=321-332&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540338383&rft.isbn_list=3540338381&rft.isbn_list=9783540338321&rft.isbn_list=3540338322&rft_id=info:doi/10.1007/11744085_25&rft_dat=%3Cpascalfrancis_sprin%3E20046269%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540338390&rft.eisbn_list=354033839X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true