Human Pose Tracking Using Multi-level Structured Models

Tracking body poses of multiple persons in monocular video is a challenging problem due to the high dimensionality of the state space and issues such as inter-occlusion of the persons’ bodies. We proposed a three-stage approach with a multi-level state representation that enables a hierarchical esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, Mun Wai, Nevatia, Ram
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue
container_start_page 368
container_title
container_volume
creator Lee, Mun Wai
Nevatia, Ram
description Tracking body poses of multiple persons in monocular video is a challenging problem due to the high dimensionality of the state space and issues such as inter-occlusion of the persons’ bodies. We proposed a three-stage approach with a multi-level state representation that enables a hierarchical estimation of 3D body poses. At the first stage, humans are tracked as blobs. In the second stage, parts such as face, shoulders and limbs are estimated and estimates are combined by grid-based belief propagation to infer 2D joint positions. The derived belief maps are used as proposal functions in the third stage to infer the 3D pose using data-driven Markov chain Monte Carlo. Experimental results on realistic indoor video sequences show that the method is able to track multiple persons during complex movement such as turning movement with inter-occlusion.
doi_str_mv 10.1007/11744078_29
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_20046224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20046224</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-db3e21260d8ee27133ea974f0b2be00badd4c629cddb603e95e0c884f9aeb5bd3</originalsourceid><addsrcrecordid>eNpVUD1PwzAUNF8SVenEH8jCwBB49nPteEQVpUitQKKdIzt-qULTpLITJP49qcoAN9wNdzqdjrFbDg8cQD9yrqUEneXCnLGJ0RlOJSBmqNU5G3HFeYoozcU_T5lLNgIEkRot8ZpNYvyEAciV4WbE9KLf2yZ5byMl62CLXdVsk0088qqvuyqt6Yvq5KMLfdH1gXyyaj3V8YZdlbaONPnVMdvMn9ezRbp8e3mdPS3Tg-CmS71DElwo8BmR0ByR7DCkBCccATjrvSyUMIX3TgGSmRIUWSZLY8lNnccxuzv1HmwsbF0G2xRVzA-h2tvwnQsAqYSQQ-7-lIuD1Wwp5K5tdzHnkB_Py_-chz_KkFtR</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Human Pose Tracking Using Multi-level Structured Models</title><source>Springer Books</source><creator>Lee, Mun Wai ; Nevatia, Ram</creator><contributor>Bischof, Horst ; Pinz, Axel ; Leonardis, Aleš</contributor><creatorcontrib>Lee, Mun Wai ; Nevatia, Ram ; Bischof, Horst ; Pinz, Axel ; Leonardis, Aleš</creatorcontrib><description>Tracking body poses of multiple persons in monocular video is a challenging problem due to the high dimensionality of the state space and issues such as inter-occlusion of the persons’ bodies. We proposed a three-stage approach with a multi-level state representation that enables a hierarchical estimation of 3D body poses. At the first stage, humans are tracked as blobs. In the second stage, parts such as face, shoulders and limbs are estimated and estimates are combined by grid-based belief propagation to infer 2D joint positions. The derived belief maps are used as proposal functions in the third stage to infer the 3D pose using data-driven Markov chain Monte Carlo. Experimental results on realistic indoor video sequences show that the method is able to track multiple persons during complex movement such as turning movement with inter-occlusion.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540338369</identifier><identifier>ISBN: 3540338365</identifier><identifier>ISBN: 9783540338321</identifier><identifier>ISBN: 3540338322</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540338376</identifier><identifier>EISBN: 3540338373</identifier><identifier>DOI: 10.1007/11744078_29</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Belief Propagation ; Body Joint ; Computer science; control theory; systems ; Exact sciences and technology ; Motion Capture Data ; Observation Function ; Pattern recognition. Digital image processing. Computational geometry ; State Candidate</subject><ispartof>Computer Vision – ECCV 2006, 2006, p.368-381</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11744078_29$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11744078_29$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20046224$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bischof, Horst</contributor><contributor>Pinz, Axel</contributor><contributor>Leonardis, Aleš</contributor><creatorcontrib>Lee, Mun Wai</creatorcontrib><creatorcontrib>Nevatia, Ram</creatorcontrib><title>Human Pose Tracking Using Multi-level Structured Models</title><title>Computer Vision – ECCV 2006</title><description>Tracking body poses of multiple persons in monocular video is a challenging problem due to the high dimensionality of the state space and issues such as inter-occlusion of the persons’ bodies. We proposed a three-stage approach with a multi-level state representation that enables a hierarchical estimation of 3D body poses. At the first stage, humans are tracked as blobs. In the second stage, parts such as face, shoulders and limbs are estimated and estimates are combined by grid-based belief propagation to infer 2D joint positions. The derived belief maps are used as proposal functions in the third stage to infer the 3D pose using data-driven Markov chain Monte Carlo. Experimental results on realistic indoor video sequences show that the method is able to track multiple persons during complex movement such as turning movement with inter-occlusion.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Belief Propagation</subject><subject>Body Joint</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Motion Capture Data</subject><subject>Observation Function</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>State Candidate</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540338369</isbn><isbn>3540338365</isbn><isbn>9783540338321</isbn><isbn>3540338322</isbn><isbn>9783540338376</isbn><isbn>3540338373</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUD1PwzAUNF8SVenEH8jCwBB49nPteEQVpUitQKKdIzt-qULTpLITJP49qcoAN9wNdzqdjrFbDg8cQD9yrqUEneXCnLGJ0RlOJSBmqNU5G3HFeYoozcU_T5lLNgIEkRot8ZpNYvyEAciV4WbE9KLf2yZ5byMl62CLXdVsk0088qqvuyqt6Yvq5KMLfdH1gXyyaj3V8YZdlbaONPnVMdvMn9ezRbp8e3mdPS3Tg-CmS71DElwo8BmR0ByR7DCkBCccATjrvSyUMIX3TgGSmRIUWSZLY8lNnccxuzv1HmwsbF0G2xRVzA-h2tvwnQsAqYSQQ-7-lIuD1Wwp5K5tdzHnkB_Py_-chz_KkFtR</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lee, Mun Wai</creator><creator>Nevatia, Ram</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Human Pose Tracking Using Multi-level Structured Models</title><author>Lee, Mun Wai ; Nevatia, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-db3e21260d8ee27133ea974f0b2be00badd4c629cddb603e95e0c884f9aeb5bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Belief Propagation</topic><topic>Body Joint</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Motion Capture Data</topic><topic>Observation Function</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>State Candidate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Mun Wai</creatorcontrib><creatorcontrib>Nevatia, Ram</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Mun Wai</au><au>Nevatia, Ram</au><au>Bischof, Horst</au><au>Pinz, Axel</au><au>Leonardis, Aleš</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Human Pose Tracking Using Multi-level Structured Models</atitle><btitle>Computer Vision – ECCV 2006</btitle><date>2006</date><risdate>2006</risdate><spage>368</spage><epage>381</epage><pages>368-381</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540338369</isbn><isbn>3540338365</isbn><isbn>9783540338321</isbn><isbn>3540338322</isbn><eisbn>9783540338376</eisbn><eisbn>3540338373</eisbn><abstract>Tracking body poses of multiple persons in monocular video is a challenging problem due to the high dimensionality of the state space and issues such as inter-occlusion of the persons’ bodies. We proposed a three-stage approach with a multi-level state representation that enables a hierarchical estimation of 3D body poses. At the first stage, humans are tracked as blobs. In the second stage, parts such as face, shoulders and limbs are estimated and estimates are combined by grid-based belief propagation to infer 2D joint positions. The derived belief maps are used as proposal functions in the third stage to infer the 3D pose using data-driven Markov chain Monte Carlo. Experimental results on realistic indoor video sequences show that the method is able to track multiple persons during complex movement such as turning movement with inter-occlusion.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11744078_29</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision – ECCV 2006, 2006, p.368-381
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_20046224
source Springer Books
subjects Applied sciences
Artificial intelligence
Belief Propagation
Body Joint
Computer science
control theory
systems
Exact sciences and technology
Motion Capture Data
Observation Function
Pattern recognition. Digital image processing. Computational geometry
State Candidate
title Human Pose Tracking Using Multi-level Structured Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Human%20Pose%20Tracking%20Using%20Multi-level%20Structured%20Models&rft.btitle=Computer%20Vision%20%E2%80%93%20ECCV%202006&rft.au=Lee,%20Mun%20Wai&rft.date=2006&rft.spage=368&rft.epage=381&rft.pages=368-381&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540338369&rft.isbn_list=3540338365&rft.isbn_list=9783540338321&rft.isbn_list=3540338322&rft_id=info:doi/10.1007/11744078_29&rft_dat=%3Cpascalfrancis_sprin%3E20046224%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540338376&rft.eisbn_list=3540338373&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true