Aggregation of Valued Relations Applied to Association Rule Interestingness Measures
One of the concerns of knowledge discovery in databases is the production of association rules. An association rule A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setl...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | |
container_start_page | 203 |
container_title | |
container_volume | |
creator | Barthélemy, Jean-Pierre Legrain, Angélique Lenca, Philippe Vaillant, Benoît |
description | One of the concerns of knowledge discovery in databases is the production of association rules. An association rule A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\longrightarrow$\end{document}B defines a relationship between two sets of attributes A and B, caracterising the data studied. Such a rule means that objects sharing attributes of A will “likely” have those contained in B. Yet, this notion of “likeliness” depends on the datamining context.
Many interestingness measures have been introduced in order to quantify this likeliness. This panel of measures is heterogeneous and the ranking of extracted rules, according to measures, may differ largely.
This contribution explores a new approach for assessing the quality of rules: aggregating valued relations. For each measure, a valued relation is built out of the numerical values it takes on the rules, and represents the preference of a rule over another. The aim in using such tools is to take into account the intensity of preference expressed by various measures, and should reduce incomparability issues related to differences in their co-domains. It also has the advantage of relating the numerical nature of measures compared to pure binary approaches.
We studied several aggregation operators. In this contribution we discuss results obtained on a toy example using the simplest of them. |
doi_str_mv | 10.1007/11681960_21 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_20039636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20039636</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-88126affe6fc8162354a41703b2dbf937efaa523ce36540d70d95abde2eb3ee83</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhM2fRCk98QK-cOAQ8HoTJz5GVYFKRUhV4Wo5yToKhCSK0wNvj6FIsJeVvhmtdoaxKxC3IER6B6Ay0EoYCUfsApNYoEwDOWYzUAARYqxP_gQhTtlMoJCRTmM8Zwvv30QYhEzrZMZ2eV2PVNup6TveO_5q2z1VfEvtD_I8H4a2CWTqee59XzYH63bfEl93E43kp6arO_KeP5H1-wAu2ZmzrafF756zl_vVbvkYbZ4f1st8Ew0S9BRlGUhlnSPlygyUDD_bGFKBhawKpzElZ20isSRUIU6VikontqhIUoFEGc7Z9eHuYH1pWzfarmy8Gcbmw46fRoaYWqEKvpuDzwepq2k0Rd-_ewPCfHdq_nWKX-R0ZMc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Aggregation of Valued Relations Applied to Association Rule Interestingness Measures</title><source>Springer Books</source><creator>Barthélemy, Jean-Pierre ; Legrain, Angélique ; Lenca, Philippe ; Vaillant, Benoît</creator><contributor>Valls, Aïda ; Domingo-Ferrer, Josep ; Narukawa, Yasuo ; Torra, Vicenç</contributor><creatorcontrib>Barthélemy, Jean-Pierre ; Legrain, Angélique ; Lenca, Philippe ; Vaillant, Benoît ; Valls, Aïda ; Domingo-Ferrer, Josep ; Narukawa, Yasuo ; Torra, Vicenç</creatorcontrib><description>One of the concerns of knowledge discovery in databases is the production of association rules. An association rule A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\longrightarrow$\end{document}B defines a relationship between two sets of attributes A and B, caracterising the data studied. Such a rule means that objects sharing attributes of A will “likely” have those contained in B. Yet, this notion of “likeliness” depends on the datamining context.
Many interestingness measures have been introduced in order to quantify this likeliness. This panel of measures is heterogeneous and the ranking of extracted rules, according to measures, may differ largely.
This contribution explores a new approach for assessing the quality of rules: aggregating valued relations. For each measure, a valued relation is built out of the numerical values it takes on the rules, and represents the preference of a rule over another. The aim in using such tools is to take into account the intensity of preference expressed by various measures, and should reduce incomparability issues related to differences in their co-domains. It also has the advantage of relating the numerical nature of measures compared to pure binary approaches.
We studied several aggregation operators. In this contribution we discuss results obtained on a toy example using the simplest of them.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540327800</identifier><identifier>ISBN: 9783540327806</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540327819</identifier><identifier>EISBN: 9783540327813</identifier><identifier>DOI: 10.1007/11681960_21</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.203-214</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11681960_21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11681960_21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20039636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Valls, Aïda</contributor><contributor>Domingo-Ferrer, Josep</contributor><contributor>Narukawa, Yasuo</contributor><contributor>Torra, Vicenç</contributor><creatorcontrib>Barthélemy, Jean-Pierre</creatorcontrib><creatorcontrib>Legrain, Angélique</creatorcontrib><creatorcontrib>Lenca, Philippe</creatorcontrib><creatorcontrib>Vaillant, Benoît</creatorcontrib><title>Aggregation of Valued Relations Applied to Association Rule Interestingness Measures</title><title>Lecture notes in computer science</title><description>One of the concerns of knowledge discovery in databases is the production of association rules. An association rule A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\longrightarrow$\end{document}B defines a relationship between two sets of attributes A and B, caracterising the data studied. Such a rule means that objects sharing attributes of A will “likely” have those contained in B. Yet, this notion of “likeliness” depends on the datamining context.
Many interestingness measures have been introduced in order to quantify this likeliness. This panel of measures is heterogeneous and the ranking of extracted rules, according to measures, may differ largely.
This contribution explores a new approach for assessing the quality of rules: aggregating valued relations. For each measure, a valued relation is built out of the numerical values it takes on the rules, and represents the preference of a rule over another. The aim in using such tools is to take into account the intensity of preference expressed by various measures, and should reduce incomparability issues related to differences in their co-domains. It also has the advantage of relating the numerical nature of measures compared to pure binary approaches.
We studied several aggregation operators. In this contribution we discuss results obtained on a toy example using the simplest of them.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540327800</isbn><isbn>9783540327806</isbn><isbn>3540327819</isbn><isbn>9783540327813</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkM1OwzAQhM2fRCk98QK-cOAQ8HoTJz5GVYFKRUhV4Wo5yToKhCSK0wNvj6FIsJeVvhmtdoaxKxC3IER6B6Ay0EoYCUfsApNYoEwDOWYzUAARYqxP_gQhTtlMoJCRTmM8Zwvv30QYhEzrZMZ2eV2PVNup6TveO_5q2z1VfEvtD_I8H4a2CWTqee59XzYH63bfEl93E43kp6arO_KeP5H1-wAu2ZmzrafF756zl_vVbvkYbZ4f1st8Ew0S9BRlGUhlnSPlygyUDD_bGFKBhawKpzElZ20isSRUIU6VikontqhIUoFEGc7Z9eHuYH1pWzfarmy8Gcbmw46fRoaYWqEKvpuDzwepq2k0Rd-_ewPCfHdq_nWKX-R0ZMc</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Barthélemy, Jean-Pierre</creator><creator>Legrain, Angélique</creator><creator>Lenca, Philippe</creator><creator>Vaillant, Benoît</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Aggregation of Valued Relations Applied to Association Rule Interestingness Measures</title><author>Barthélemy, Jean-Pierre ; Legrain, Angélique ; Lenca, Philippe ; Vaillant, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-88126affe6fc8162354a41703b2dbf937efaa523ce36540d70d95abde2eb3ee83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barthélemy, Jean-Pierre</creatorcontrib><creatorcontrib>Legrain, Angélique</creatorcontrib><creatorcontrib>Lenca, Philippe</creatorcontrib><creatorcontrib>Vaillant, Benoît</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barthélemy, Jean-Pierre</au><au>Legrain, Angélique</au><au>Lenca, Philippe</au><au>Vaillant, Benoît</au><au>Valls, Aïda</au><au>Domingo-Ferrer, Josep</au><au>Narukawa, Yasuo</au><au>Torra, Vicenç</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Aggregation of Valued Relations Applied to Association Rule Interestingness Measures</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>203</spage><epage>214</epage><pages>203-214</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540327800</isbn><isbn>9783540327806</isbn><eisbn>3540327819</eisbn><eisbn>9783540327813</eisbn><abstract>One of the concerns of knowledge discovery in databases is the production of association rules. An association rule A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\longrightarrow$\end{document}B defines a relationship between two sets of attributes A and B, caracterising the data studied. Such a rule means that objects sharing attributes of A will “likely” have those contained in B. Yet, this notion of “likeliness” depends on the datamining context.
Many interestingness measures have been introduced in order to quantify this likeliness. This panel of measures is heterogeneous and the ranking of extracted rules, according to measures, may differ largely.
This contribution explores a new approach for assessing the quality of rules: aggregating valued relations. For each measure, a valued relation is built out of the numerical values it takes on the rules, and represents the preference of a rule over another. The aim in using such tools is to take into account the intensity of preference expressed by various measures, and should reduce incomparability issues related to differences in their co-domains. It also has the advantage of relating the numerical nature of measures compared to pure binary approaches.
We studied several aggregation operators. In this contribution we discuss results obtained on a toy example using the simplest of them.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11681960_21</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.203-214 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_20039636 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Data processing. List processing. Character string processing Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Software |
title | Aggregation of Valued Relations Applied to Association Rule Interestingness Measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Aggregation%20of%20Valued%20Relations%20Applied%20to%20Association%20Rule%20Interestingness%20Measures&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Barth%C3%A9lemy,%20Jean-Pierre&rft.date=2006&rft.spage=203&rft.epage=214&rft.pages=203-214&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540327800&rft.isbn_list=9783540327806&rft_id=info:doi/10.1007/11681960_21&rft_dat=%3Cpascalfrancis_sprin%3E20039636%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540327819&rft.eisbn_list=9783540327813&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |