Information-Driven Phase Changes in Multi-agent Coordination

Large systems of agents deployed in a real-world environment face threats to their problem solving performance that are independent of the complexity of the problem or the characteristics of their specific solution mechanism. One such threat is the degrading of the quality of agent coordination mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brueckner, Sven A., Parunak, H. V. D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue
container_start_page 104
container_title
container_volume
creator Brueckner, Sven A.
Parunak, H. V. D.
description Large systems of agents deployed in a real-world environment face threats to their problem solving performance that are independent of the complexity of the problem or the characteristics of their specific solution mechanism. One such threat is the degrading of the quality of agent coordination mechanisms when faced with delays in the flow of critical information among the agents introduced by communication latencies. In this paper we demonstrate in a simple model of locally interacting agents that the emerging system-level performance may degrade very suddenly as the rate of individual decision making increases against the availability of up-to-date information. We present results from extensive simulation experiments that lead us to select a locally accessible metric to adapt the agent’s individual decision rate to values that are below this phase change. Given the generic nature of the coordination mechanism that is analyzed and the information-theoretic metric, the adaptation mechanism may increase the deployability of large-scale agent systems in real-world applications.
doi_str_mv 10.1007/11734697_8
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_20015412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20015412</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1338-ff7fa76b2b779360c178814523a4a7be29351c8edc134d256734e3e7335fe2d53</originalsourceid><addsrcrecordid>eNpNUDtPwzAYNC-JUrrwC7IgsRj8-bPjWGJB4VWpCAaYLSexW0PrVHZB4t8TKBJMN9xDd0fICbBzYExdACgUpVam2iETrSqUgiGi5GKXjKAEoIhC7_3nBJf7ZMSQcaqVwENylPMrY4wrzUfkchp9n1Z2E_pIr1P4cLF4Wtjsinph49zlIsTi4X25CdTOXdwUdd-nLsQfwzE58HaZ3eQXx-Tl9ua5vqezx7tpfTWja0CsqPfKW1U2vFFKY8laUFUFQnK0wqrGcY0S2sp1LaDouCyHjQ6dGnZ5xzuJY3K6zV3b3NqlTza2IZt1CiubPg1nDKQAPujOtro8UEP5ZJq-f8sGmPl-z_y9h1_EmVpq</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Information-Driven Phase Changes in Multi-agent Coordination</title><source>Springer Books</source><creator>Brueckner, Sven A. ; Parunak, H. V. D.</creator><contributor>Brueckner, Sven A. ; Hales, David ; Di Marzo Serugendo, Giovanna ; Zambonelli, Franco</contributor><creatorcontrib>Brueckner, Sven A. ; Parunak, H. V. D. ; Brueckner, Sven A. ; Hales, David ; Di Marzo Serugendo, Giovanna ; Zambonelli, Franco</creatorcontrib><description>Large systems of agents deployed in a real-world environment face threats to their problem solving performance that are independent of the complexity of the problem or the characteristics of their specific solution mechanism. One such threat is the degrading of the quality of agent coordination mechanisms when faced with delays in the flow of critical information among the agents introduced by communication latencies. In this paper we demonstrate in a simple model of locally interacting agents that the emerging system-level performance may degrade very suddenly as the rate of individual decision making increases against the availability of up-to-date information. We present results from extensive simulation experiments that lead us to select a locally accessible metric to adapt the agent’s individual decision rate to values that are below this phase change. Given the generic nature of the coordination mechanism that is analyzed and the information-theoretic metric, the adaptation mechanism may increase the deployability of large-scale agent systems in real-world applications.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540333425</identifier><identifier>ISBN: 3540333428</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540333524</identifier><identifier>EISBN: 3540333525</identifier><identifier>DOI: 10.1007/11734697_8</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Communication Latency ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Current Color ; Decision Cycle ; Exact sciences and technology ; Ment Direction ; Parameter Sweep ; Software</subject><ispartof>Engineering Self-Organising Systems, 2006, p.104-119</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11734697_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11734697_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20015412$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Brueckner, Sven A.</contributor><contributor>Hales, David</contributor><contributor>Di Marzo Serugendo, Giovanna</contributor><contributor>Zambonelli, Franco</contributor><creatorcontrib>Brueckner, Sven A.</creatorcontrib><creatorcontrib>Parunak, H. V. D.</creatorcontrib><title>Information-Driven Phase Changes in Multi-agent Coordination</title><title>Engineering Self-Organising Systems</title><description>Large systems of agents deployed in a real-world environment face threats to their problem solving performance that are independent of the complexity of the problem or the characteristics of their specific solution mechanism. One such threat is the degrading of the quality of agent coordination mechanisms when faced with delays in the flow of critical information among the agents introduced by communication latencies. In this paper we demonstrate in a simple model of locally interacting agents that the emerging system-level performance may degrade very suddenly as the rate of individual decision making increases against the availability of up-to-date information. We present results from extensive simulation experiments that lead us to select a locally accessible metric to adapt the agent’s individual decision rate to values that are below this phase change. Given the generic nature of the coordination mechanism that is analyzed and the information-theoretic metric, the adaptation mechanism may increase the deployability of large-scale agent systems in real-world applications.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Communication Latency</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Current Color</subject><subject>Decision Cycle</subject><subject>Exact sciences and technology</subject><subject>Ment Direction</subject><subject>Parameter Sweep</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540333425</isbn><isbn>3540333428</isbn><isbn>9783540333524</isbn><isbn>3540333525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUDtPwzAYNC-JUrrwC7IgsRj8-bPjWGJB4VWpCAaYLSexW0PrVHZB4t8TKBJMN9xDd0fICbBzYExdACgUpVam2iETrSqUgiGi5GKXjKAEoIhC7_3nBJf7ZMSQcaqVwENylPMrY4wrzUfkchp9n1Z2E_pIr1P4cLF4Wtjsinph49zlIsTi4X25CdTOXdwUdd-nLsQfwzE58HaZ3eQXx-Tl9ua5vqezx7tpfTWja0CsqPfKW1U2vFFKY8laUFUFQnK0wqrGcY0S2sp1LaDouCyHjQ6dGnZ5xzuJY3K6zV3b3NqlTza2IZt1CiubPg1nDKQAPujOtro8UEP5ZJq-f8sGmPl-z_y9h1_EmVpq</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Brueckner, Sven A.</creator><creator>Parunak, H. V. D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Information-Driven Phase Changes in Multi-agent Coordination</title><author>Brueckner, Sven A. ; Parunak, H. V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1338-ff7fa76b2b779360c178814523a4a7be29351c8edc134d256734e3e7335fe2d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Communication Latency</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Current Color</topic><topic>Decision Cycle</topic><topic>Exact sciences and technology</topic><topic>Ment Direction</topic><topic>Parameter Sweep</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brueckner, Sven A.</creatorcontrib><creatorcontrib>Parunak, H. V. D.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brueckner, Sven A.</au><au>Parunak, H. V. D.</au><au>Brueckner, Sven A.</au><au>Hales, David</au><au>Di Marzo Serugendo, Giovanna</au><au>Zambonelli, Franco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Information-Driven Phase Changes in Multi-agent Coordination</atitle><btitle>Engineering Self-Organising Systems</btitle><date>2006</date><risdate>2006</risdate><spage>104</spage><epage>119</epage><pages>104-119</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540333425</isbn><isbn>3540333428</isbn><eisbn>9783540333524</eisbn><eisbn>3540333525</eisbn><abstract>Large systems of agents deployed in a real-world environment face threats to their problem solving performance that are independent of the complexity of the problem or the characteristics of their specific solution mechanism. One such threat is the degrading of the quality of agent coordination mechanisms when faced with delays in the flow of critical information among the agents introduced by communication latencies. In this paper we demonstrate in a simple model of locally interacting agents that the emerging system-level performance may degrade very suddenly as the rate of individual decision making increases against the availability of up-to-date information. We present results from extensive simulation experiments that lead us to select a locally accessible metric to adapt the agent’s individual decision rate to values that are below this phase change. Given the generic nature of the coordination mechanism that is analyzed and the information-theoretic metric, the adaptation mechanism may increase the deployability of large-scale agent systems in real-world applications.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11734697_8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Engineering Self-Organising Systems, 2006, p.104-119
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_20015412
source Springer Books
subjects Applied sciences
Artificial intelligence
Communication Latency
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Current Color
Decision Cycle
Exact sciences and technology
Ment Direction
Parameter Sweep
Software
title Information-Driven Phase Changes in Multi-agent Coordination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Information-Driven%20Phase%20Changes%20in%20Multi-agent%20Coordination&rft.btitle=Engineering%20Self-Organising%20Systems&rft.au=Brueckner,%20Sven%20A.&rft.date=2006&rft.spage=104&rft.epage=119&rft.pages=104-119&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540333425&rft.isbn_list=3540333428&rft_id=info:doi/10.1007/11734697_8&rft_dat=%3Cpascalfrancis_sprin%3E20015412%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540333524&rft.eisbn_list=3540333525&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true