Hybrid Techniques for Dynamic Optimization Problems

In a stationary optimization problem, the fitness landscape does not change during the optimization process; and the goal of an optimization algorithm is to locate a stationary optimum. On the other hand, most of the real world problems are dynamic, and stochastically change over time. Genetic Algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ayvaz, Demet, Topcuoglu, Haluk, Gurgen, Fikret
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 95
container_title
container_volume
creator Ayvaz, Demet
Topcuoglu, Haluk
Gurgen, Fikret
description In a stationary optimization problem, the fitness landscape does not change during the optimization process; and the goal of an optimization algorithm is to locate a stationary optimum. On the other hand, most of the real world problems are dynamic, and stochastically change over time. Genetic Algorithms have been applied to dynamic problems, recently. In this study, we present two hybrid techniques that are applied on moving peaks benchmark problem, where these techniques are the extensions of the leading methods in the literature. Based on the experimental study, it was observed that the hybrid methods outperform the related work with respect to quality of solutions for various parameters of the given benchmark problem.
doi_str_mv 10.1007/11902140_12
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19993308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19993308</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-34cbbe43a68990e1551effb141d73e9b3e0a0a8e60c71ad5ab3f95897ba9d09e3</originalsourceid><addsrcrecordid>eNpNkDtPwzAURs1Loi2d-ANZGBgC9_o6ce6IeBWpUhnKHNmJA4bmgV2G8uuJVJCYvuEcfcMR4hzhCgH0NSKDRAUlygMxpUyB0lJRfigmmCOmRIqPxJx18cckHosJEMiUtaJTMY3xHQCkZjkRtNjZ4Otk7aq3zn9-uZg0fUjudp1pfZWshq1v_bfZ-r5LnkNvN66NZ-KkMZvo5r87Ey8P9-vbRbpcPT7d3izTQSJvU1KVtU6RyQtmcJhl6JrGosJak2NLDgyYwuVQaTR1Ziw1nBWsreEa2NFMXOx_BxMrs2mC6SofyyH41oRdicxMBMXoXe69OKLu1YXS9v1HLHGMNCYr_yWjH5E9WGE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Techniques for Dynamic Optimization Problems</title><source>Springer Books</source><creator>Ayvaz, Demet ; Topcuoglu, Haluk ; Gurgen, Fikret</creator><contributor>Savaş, Erkay ; Balcısoy, Selim ; Levi, Albert ; Yenigün, Hüsnü ; Saygın, Yücel</contributor><creatorcontrib>Ayvaz, Demet ; Topcuoglu, Haluk ; Gurgen, Fikret ; Savaş, Erkay ; Balcısoy, Selim ; Levi, Albert ; Yenigün, Hüsnü ; Saygın, Yücel</creatorcontrib><description>In a stationary optimization problem, the fitness landscape does not change during the optimization process; and the goal of an optimization algorithm is to locate a stationary optimum. On the other hand, most of the real world problems are dynamic, and stochastically change over time. Genetic Algorithms have been applied to dynamic problems, recently. In this study, we present two hybrid techniques that are applied on moving peaks benchmark problem, where these techniques are the extensions of the leading methods in the literature. Based on the experimental study, it was observed that the hybrid methods outperform the related work with respect to quality of solutions for various parameters of the given benchmark problem.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540472421</identifier><identifier>ISBN: 3540472428</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540472436</identifier><identifier>EISBN: 9783540472438</identifier><identifier>DOI: 10.1007/11902140_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Dynamic Optimization Problem ; Exact sciences and technology ; Hybrid Technique ; Local Search Technique ; Shift Length ; Stationary Optimization Problem</subject><ispartof>Computer and Information Sciences – ISCIS 2006, 2006, p.95-104</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11902140_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11902140_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27908,38238,41425,42494</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19993308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Savaş, Erkay</contributor><contributor>Balcısoy, Selim</contributor><contributor>Levi, Albert</contributor><contributor>Yenigün, Hüsnü</contributor><contributor>Saygın, Yücel</contributor><creatorcontrib>Ayvaz, Demet</creatorcontrib><creatorcontrib>Topcuoglu, Haluk</creatorcontrib><creatorcontrib>Gurgen, Fikret</creatorcontrib><title>Hybrid Techniques for Dynamic Optimization Problems</title><title>Computer and Information Sciences – ISCIS 2006</title><description>In a stationary optimization problem, the fitness landscape does not change during the optimization process; and the goal of an optimization algorithm is to locate a stationary optimum. On the other hand, most of the real world problems are dynamic, and stochastically change over time. Genetic Algorithms have been applied to dynamic problems, recently. In this study, we present two hybrid techniques that are applied on moving peaks benchmark problem, where these techniques are the extensions of the leading methods in the literature. Based on the experimental study, it was observed that the hybrid methods outperform the related work with respect to quality of solutions for various parameters of the given benchmark problem.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Dynamic Optimization Problem</subject><subject>Exact sciences and technology</subject><subject>Hybrid Technique</subject><subject>Local Search Technique</subject><subject>Shift Length</subject><subject>Stationary Optimization Problem</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540472421</isbn><isbn>3540472428</isbn><isbn>3540472436</isbn><isbn>9783540472438</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAURs1Loi2d-ANZGBgC9_o6ce6IeBWpUhnKHNmJA4bmgV2G8uuJVJCYvuEcfcMR4hzhCgH0NSKDRAUlygMxpUyB0lJRfigmmCOmRIqPxJx18cckHosJEMiUtaJTMY3xHQCkZjkRtNjZ4Otk7aq3zn9-uZg0fUjudp1pfZWshq1v_bfZ-r5LnkNvN66NZ-KkMZvo5r87Ey8P9-vbRbpcPT7d3izTQSJvU1KVtU6RyQtmcJhl6JrGosJak2NLDgyYwuVQaTR1Ziw1nBWsreEa2NFMXOx_BxMrs2mC6SofyyH41oRdicxMBMXoXe69OKLu1YXS9v1HLHGMNCYr_yWjH5E9WGE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ayvaz, Demet</creator><creator>Topcuoglu, Haluk</creator><creator>Gurgen, Fikret</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Hybrid Techniques for Dynamic Optimization Problems</title><author>Ayvaz, Demet ; Topcuoglu, Haluk ; Gurgen, Fikret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-34cbbe43a68990e1551effb141d73e9b3e0a0a8e60c71ad5ab3f95897ba9d09e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Dynamic Optimization Problem</topic><topic>Exact sciences and technology</topic><topic>Hybrid Technique</topic><topic>Local Search Technique</topic><topic>Shift Length</topic><topic>Stationary Optimization Problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayvaz, Demet</creatorcontrib><creatorcontrib>Topcuoglu, Haluk</creatorcontrib><creatorcontrib>Gurgen, Fikret</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayvaz, Demet</au><au>Topcuoglu, Haluk</au><au>Gurgen, Fikret</au><au>Savaş, Erkay</au><au>Balcısoy, Selim</au><au>Levi, Albert</au><au>Yenigün, Hüsnü</au><au>Saygın, Yücel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Techniques for Dynamic Optimization Problems</atitle><btitle>Computer and Information Sciences – ISCIS 2006</btitle><date>2006</date><risdate>2006</risdate><spage>95</spage><epage>104</epage><pages>95-104</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540472421</isbn><isbn>3540472428</isbn><eisbn>3540472436</eisbn><eisbn>9783540472438</eisbn><abstract>In a stationary optimization problem, the fitness landscape does not change during the optimization process; and the goal of an optimization algorithm is to locate a stationary optimum. On the other hand, most of the real world problems are dynamic, and stochastically change over time. Genetic Algorithms have been applied to dynamic problems, recently. In this study, we present two hybrid techniques that are applied on moving peaks benchmark problem, where these techniques are the extensions of the leading methods in the literature. Based on the experimental study, it was observed that the hybrid methods outperform the related work with respect to quality of solutions for various parameters of the given benchmark problem.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11902140_12</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer and Information Sciences – ISCIS 2006, 2006, p.95-104
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19993308
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Dynamic Optimization Problem
Exact sciences and technology
Hybrid Technique
Local Search Technique
Shift Length
Stationary Optimization Problem
title Hybrid Techniques for Dynamic Optimization Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Techniques%20for%20Dynamic%20Optimization%20Problems&rft.btitle=Computer%20and%20Information%20Sciences%20%E2%80%93%20ISCIS%202006&rft.au=Ayvaz,%20Demet&rft.date=2006&rft.spage=95&rft.epage=104&rft.pages=95-104&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540472421&rft.isbn_list=3540472428&rft_id=info:doi/10.1007/11902140_12&rft_dat=%3Cpascalfrancis_sprin%3E19993308%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540472436&rft.eisbn_list=9783540472438&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true