Application of Neural Networks in Chain Curve Modelling

A modelling process of an unknown multi-dimensional system is mostly performed with methods which describe the system by a multi-dimensional surface (e.g. neural networks (NNs)). Some systems, however, does not have a surface nature. On the contrary – their behavior resembles multi-dimensional chain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Piegat, Andrzej, Rejer, Izabela, Mikolajczyk, Marek
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue
container_start_page 104
container_title
container_volume
creator Piegat, Andrzej
Rejer, Izabela
Mikolajczyk, Marek
description A modelling process of an unknown multi-dimensional system is mostly performed with methods which describe the system by a multi-dimensional surface (e.g. neural networks (NNs)). Some systems, however, does not have a surface nature. On the contrary – their behavior resembles multi-dimensional chains. Obviously, as it was proven in numerous applications, always better results can be obtained when the modelling method corresponds to the system nature. Therefore, when a data distribution of an unknown system has a chain characteristic, the system should be also modelled with a chain, not a surface, method. The aim of this article is to present the alternative approach to the modelling process, in which the multi-dimensional model of an unknown system is built on the basis of a set of two-dimensional NNs instead of one multi-dimensional NN. The proposed approach results in a chain multi-dimensional model of an analyzed system.
doi_str_mv 10.1007/11785231_12
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19992726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19992726</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-46b0c04bb37339b526bc3ade91e00910902ca9136f8e616a7299a71c4cf66283</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxM2XRCmd-AeyMDAE3vNz7LyxqsqHVGDpHjmuU0JDEtktiP-eVO3ADXfD73TDCXGDcI8A5gHR5JkkLFCeiAmbnDIFlJkM9KkYoUZMiRSfiasjUDmdixEQyJSNoksxifETBhFqUvlImGnfN7Wz27prk65K3vwu2GaI7U8XNjGp22T2Yfe-C98-ee1Wvmnqdn0tLirbRD855lgsH-fL2XO6eH96mU0XaS-Rt6nSJThQZUmGiMtM6tKRXXlGD8AIDNJZRtJV7jVqaySzNeiUq7SWOY3F7WG2t9HZpgq2dXUs-lB_2fBbIDNLI_XQuzv04oDatQ9F2XWbWCAU--OKf8fRH60SWGQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Neural Networks in Chain Curve Modelling</title><source>Springer Books</source><creator>Piegat, Andrzej ; Rejer, Izabela ; Mikolajczyk, Marek</creator><contributor>Tadeusiewicz, Ryszard ; Żurada, Jacek M. ; Rutkowski, Leszek ; Zadeh, Lotfi A.</contributor><creatorcontrib>Piegat, Andrzej ; Rejer, Izabela ; Mikolajczyk, Marek ; Tadeusiewicz, Ryszard ; Żurada, Jacek M. ; Rutkowski, Leszek ; Zadeh, Lotfi A.</creatorcontrib><description>A modelling process of an unknown multi-dimensional system is mostly performed with methods which describe the system by a multi-dimensional surface (e.g. neural networks (NNs)). Some systems, however, does not have a surface nature. On the contrary – their behavior resembles multi-dimensional chains. Obviously, as it was proven in numerous applications, always better results can be obtained when the modelling method corresponds to the system nature. Therefore, when a data distribution of an unknown system has a chain characteristic, the system should be also modelled with a chain, not a surface, method. The aim of this article is to present the alternative approach to the modelling process, in which the multi-dimensional model of an unknown system is built on the basis of a set of two-dimensional NNs instead of one multi-dimensional NN. The proposed approach results in a chain multi-dimensional model of an analyzed system.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540357483</identifier><identifier>ISBN: 9783540357483</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540357506</identifier><identifier>EISBN: 3540357505</identifier><identifier>DOI: 10.1007/11785231_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Artificial Intelligence and Soft Computing – ICAISC 2006, 2006, p.104-112</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11785231_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11785231_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19992726$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tadeusiewicz, Ryszard</contributor><contributor>Żurada, Jacek M.</contributor><contributor>Rutkowski, Leszek</contributor><contributor>Zadeh, Lotfi A.</contributor><creatorcontrib>Piegat, Andrzej</creatorcontrib><creatorcontrib>Rejer, Izabela</creatorcontrib><creatorcontrib>Mikolajczyk, Marek</creatorcontrib><title>Application of Neural Networks in Chain Curve Modelling</title><title>Artificial Intelligence and Soft Computing – ICAISC 2006</title><description>A modelling process of an unknown multi-dimensional system is mostly performed with methods which describe the system by a multi-dimensional surface (e.g. neural networks (NNs)). Some systems, however, does not have a surface nature. On the contrary – their behavior resembles multi-dimensional chains. Obviously, as it was proven in numerous applications, always better results can be obtained when the modelling method corresponds to the system nature. Therefore, when a data distribution of an unknown system has a chain characteristic, the system should be also modelled with a chain, not a surface, method. The aim of this article is to present the alternative approach to the modelling process, in which the multi-dimensional model of an unknown system is built on the basis of a set of two-dimensional NNs instead of one multi-dimensional NN. The proposed approach results in a chain multi-dimensional model of an analyzed system.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540357483</isbn><isbn>9783540357483</isbn><isbn>9783540357506</isbn><isbn>3540357505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkL1PwzAUxM2XRCmd-AeyMDAE3vNz7LyxqsqHVGDpHjmuU0JDEtktiP-eVO3ADXfD73TDCXGDcI8A5gHR5JkkLFCeiAmbnDIFlJkM9KkYoUZMiRSfiasjUDmdixEQyJSNoksxifETBhFqUvlImGnfN7Wz27prk65K3vwu2GaI7U8XNjGp22T2Yfe-C98-ee1Wvmnqdn0tLirbRD855lgsH-fL2XO6eH96mU0XaS-Rt6nSJThQZUmGiMtM6tKRXXlGD8AIDNJZRtJV7jVqaySzNeiUq7SWOY3F7WG2t9HZpgq2dXUs-lB_2fBbIDNLI_XQuzv04oDatQ9F2XWbWCAU--OKf8fRH60SWGQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Piegat, Andrzej</creator><creator>Rejer, Izabela</creator><creator>Mikolajczyk, Marek</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Application of Neural Networks in Chain Curve Modelling</title><author>Piegat, Andrzej ; Rejer, Izabela ; Mikolajczyk, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-46b0c04bb37339b526bc3ade91e00910902ca9136f8e616a7299a71c4cf66283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piegat, Andrzej</creatorcontrib><creatorcontrib>Rejer, Izabela</creatorcontrib><creatorcontrib>Mikolajczyk, Marek</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piegat, Andrzej</au><au>Rejer, Izabela</au><au>Mikolajczyk, Marek</au><au>Tadeusiewicz, Ryszard</au><au>Żurada, Jacek M.</au><au>Rutkowski, Leszek</au><au>Zadeh, Lotfi A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Neural Networks in Chain Curve Modelling</atitle><btitle>Artificial Intelligence and Soft Computing – ICAISC 2006</btitle><date>2006</date><risdate>2006</risdate><spage>104</spage><epage>112</epage><pages>104-112</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540357483</isbn><isbn>9783540357483</isbn><eisbn>9783540357506</eisbn><eisbn>3540357505</eisbn><abstract>A modelling process of an unknown multi-dimensional system is mostly performed with methods which describe the system by a multi-dimensional surface (e.g. neural networks (NNs)). Some systems, however, does not have a surface nature. On the contrary – their behavior resembles multi-dimensional chains. Obviously, as it was proven in numerous applications, always better results can be obtained when the modelling method corresponds to the system nature. Therefore, when a data distribution of an unknown system has a chain characteristic, the system should be also modelled with a chain, not a surface, method. The aim of this article is to present the alternative approach to the modelling process, in which the multi-dimensional model of an unknown system is built on the basis of a set of two-dimensional NNs instead of one multi-dimensional NN. The proposed approach results in a chain multi-dimensional model of an analyzed system.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11785231_12</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Intelligence and Soft Computing – ICAISC 2006, 2006, p.104-112
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19992726
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Application of Neural Networks in Chain Curve Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Neural%20Networks%20in%20Chain%20Curve%20Modelling&rft.btitle=Artificial%20Intelligence%20and%20Soft%20Computing%20%E2%80%93%20ICAISC%202006&rft.au=Piegat,%20Andrzej&rft.date=2006&rft.spage=104&rft.epage=112&rft.pages=104-112&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540357483&rft.isbn_list=9783540357483&rft_id=info:doi/10.1007/11785231_12&rft_dat=%3Cpascalfrancis_sprin%3E19992726%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540357506&rft.eisbn_list=3540357505&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true