Continuous Function Optimization Using Hybrid Ant Colony Approach with Orthogonal Design Scheme

A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Jun, Chen, Wei-neng, Zhong, Jing-hui, Tan, Xuan, Li, Yun
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue
container_start_page 126
container_title
container_volume
creator Zhang, Jun
Chen, Wei-neng
Zhong, Jing-hui
Tan, Xuan
Li, Yun
description A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) each independent variable space (IVS) of CFO is dispersed into a number of random and movable nodes; b) the carriers of pheromone of ACO are shifted to the nodes; c) solution path can be obtained by choosing one appropriate node from each IVS by ant; d) with the ODS, the best solved path is further improved. The proposed algorithm has been successfully applied to 10 benchmark test functions. The performance and a comparison with CACO and FEP have been studied.
doi_str_mv 10.1007/11903697_17
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19992614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19992614</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-787bb07cfefedf6bdbe38dd5b6d9fadfbbefca08d06eedd5ae0559eb048613b3</originalsourceid><addsrcrecordid>eNpNUE1PwyAAxa_EOXfyD3Dx4KEKhUI5LtOpyZIdnGcCBVq0g6Z0MfPXW50mvsvL-8g7PACuMLrFCPE7jAUiTHCJ-RG4IAVFlBOS82MwwQzjjBAqTsBM8PIvw_kpmCCC8kxwSs7BLKU3NILkCFE6AXIRw-DDLu4SXO5CNfgY4Lob_NZ_qh_xmnyo4dNe997AeRjgIrYx7OG86_qoqgZ--KGB635oYh2DauG9Tb4O8KVq7NZegjOn2mRnvzwFm-XDZvGUrdaPz4v5Kuvygg0ZL7nWiFfOOmsc00ZbUhpTaGaEU8ZpbV2lUGkQs3b0lUVFIaxGtGSYaDIF14fZTqVKta5XofJJdr3fqn4vsRAiZ5iOvZtDL41RqG0vdYzvSWIkvw-W_w4mX5lGayE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Continuous Function Optimization Using Hybrid Ant Colony Approach with Orthogonal Design Scheme</title><source>Springer Books</source><creator>Zhang, Jun ; Chen, Wei-neng ; Zhong, Jing-hui ; Tan, Xuan ; Li, Yun</creator><contributor>Iba, Hitoshi ; Wang, Xufa ; Chen, Guo-Liang ; Li, Xiaodong ; Chen, Shu-Heng ; Wang, Tzai-Der ; Yao, Xin ; Abbass, Hussein</contributor><creatorcontrib>Zhang, Jun ; Chen, Wei-neng ; Zhong, Jing-hui ; Tan, Xuan ; Li, Yun ; Iba, Hitoshi ; Wang, Xufa ; Chen, Guo-Liang ; Li, Xiaodong ; Chen, Shu-Heng ; Wang, Tzai-Der ; Yao, Xin ; Abbass, Hussein</creatorcontrib><description>A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) each independent variable space (IVS) of CFO is dispersed into a number of random and movable nodes; b) the carriers of pheromone of ACO are shifted to the nodes; c) solution path can be obtained by choosing one appropriate node from each IVS by ant; d) with the ODS, the best solved path is further improved. The proposed algorithm has been successfully applied to 10 benchmark test functions. The performance and a comparison with CACO and FEP have been studied.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540473312</identifier><identifier>ISBN: 3540473319</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540473327</identifier><identifier>EISBN: 9783540473329</identifier><identifier>DOI: 10.1007/11903697_17</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Multimodal Function ; Pheromone Information ; Search Range ; Solution Path ; Unimodal Function</subject><ispartof>Lecture notes in computer science, 2006, p.126-133</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11903697_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11903697_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19992614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Iba, Hitoshi</contributor><contributor>Wang, Xufa</contributor><contributor>Chen, Guo-Liang</contributor><contributor>Li, Xiaodong</contributor><contributor>Chen, Shu-Heng</contributor><contributor>Wang, Tzai-Der</contributor><contributor>Yao, Xin</contributor><contributor>Abbass, Hussein</contributor><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Chen, Wei-neng</creatorcontrib><creatorcontrib>Zhong, Jing-hui</creatorcontrib><creatorcontrib>Tan, Xuan</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><title>Continuous Function Optimization Using Hybrid Ant Colony Approach with Orthogonal Design Scheme</title><title>Lecture notes in computer science</title><description>A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) each independent variable space (IVS) of CFO is dispersed into a number of random and movable nodes; b) the carriers of pheromone of ACO are shifted to the nodes; c) solution path can be obtained by choosing one appropriate node from each IVS by ant; d) with the ODS, the best solved path is further improved. The proposed algorithm has been successfully applied to 10 benchmark test functions. The performance and a comparison with CACO and FEP have been studied.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Multimodal Function</subject><subject>Pheromone Information</subject><subject>Search Range</subject><subject>Solution Path</subject><subject>Unimodal Function</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540473312</isbn><isbn>3540473319</isbn><isbn>3540473327</isbn><isbn>9783540473329</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNUE1PwyAAxa_EOXfyD3Dx4KEKhUI5LtOpyZIdnGcCBVq0g6Z0MfPXW50mvsvL-8g7PACuMLrFCPE7jAUiTHCJ-RG4IAVFlBOS82MwwQzjjBAqTsBM8PIvw_kpmCCC8kxwSs7BLKU3NILkCFE6AXIRw-DDLu4SXO5CNfgY4Lob_NZ_qh_xmnyo4dNe997AeRjgIrYx7OG86_qoqgZ--KGB635oYh2DauG9Tb4O8KVq7NZegjOn2mRnvzwFm-XDZvGUrdaPz4v5Kuvygg0ZL7nWiFfOOmsc00ZbUhpTaGaEU8ZpbV2lUGkQs3b0lUVFIaxGtGSYaDIF14fZTqVKta5XofJJdr3fqn4vsRAiZ5iOvZtDL41RqG0vdYzvSWIkvw-W_w4mX5lGayE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zhang, Jun</creator><creator>Chen, Wei-neng</creator><creator>Zhong, Jing-hui</creator><creator>Tan, Xuan</creator><creator>Li, Yun</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Continuous Function Optimization Using Hybrid Ant Colony Approach with Orthogonal Design Scheme</title><author>Zhang, Jun ; Chen, Wei-neng ; Zhong, Jing-hui ; Tan, Xuan ; Li, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-787bb07cfefedf6bdbe38dd5b6d9fadfbbefca08d06eedd5ae0559eb048613b3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Multimodal Function</topic><topic>Pheromone Information</topic><topic>Search Range</topic><topic>Solution Path</topic><topic>Unimodal Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Chen, Wei-neng</creatorcontrib><creatorcontrib>Zhong, Jing-hui</creatorcontrib><creatorcontrib>Tan, Xuan</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jun</au><au>Chen, Wei-neng</au><au>Zhong, Jing-hui</au><au>Tan, Xuan</au><au>Li, Yun</au><au>Iba, Hitoshi</au><au>Wang, Xufa</au><au>Chen, Guo-Liang</au><au>Li, Xiaodong</au><au>Chen, Shu-Heng</au><au>Wang, Tzai-Der</au><au>Yao, Xin</au><au>Abbass, Hussein</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Continuous Function Optimization Using Hybrid Ant Colony Approach with Orthogonal Design Scheme</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>126</spage><epage>133</epage><pages>126-133</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540473312</isbn><isbn>3540473319</isbn><eisbn>3540473327</eisbn><eisbn>9783540473329</eisbn><abstract>A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) each independent variable space (IVS) of CFO is dispersed into a number of random and movable nodes; b) the carriers of pheromone of ACO are shifted to the nodes; c) solution path can be obtained by choosing one appropriate node from each IVS by ant; d) with the ODS, the best solved path is further improved. The proposed algorithm has been successfully applied to 10 benchmark test functions. The performance and a comparison with CACO and FEP have been studied.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11903697_17</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.126-133
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19992614
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Multimodal Function
Pheromone Information
Search Range
Solution Path
Unimodal Function
title Continuous Function Optimization Using Hybrid Ant Colony Approach with Orthogonal Design Scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Continuous%20Function%20Optimization%20Using%20Hybrid%20Ant%20Colony%20Approach%20with%20Orthogonal%20Design%20Scheme&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Zhang,%20Jun&rft.date=2006&rft.spage=126&rft.epage=133&rft.pages=126-133&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540473312&rft.isbn_list=3540473319&rft_id=info:doi/10.1007/11903697_17&rft_dat=%3Cpascalfrancis_sprin%3E19992614%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540473327&rft.eisbn_list=9783540473329&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true