Fast Motion Estimation Using Spatio-temporal Correlations

Motion Estimation (ME) is an important part of video encoding systems, since it can significantly affect the output quality of an encoded sequences. However, ME requires a significant part of the encoding time, because ME is a combination of techniques such as motion starting point, motion search pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yoon, Hyo Sun, Yoo, Jae Myeong, Dinh, Toan Nguyen, Son, Hwa Jeong, Park, Mi Seon, Lee, Guee Sang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue
container_start_page 548
container_title
container_volume
creator Yoon, Hyo Sun
Yoo, Jae Myeong
Dinh, Toan Nguyen
Son, Hwa Jeong
Park, Mi Seon
Lee, Guee Sang
description Motion Estimation (ME) is an important part of video encoding systems, since it can significantly affect the output quality of an encoded sequences. However, ME requires a significant part of the encoding time, because ME is a combination of techniques such as motion starting point, motion search pattern, etc. For this reason, low complexity motion estimation algorithms are viable solutions. In this paper, we propose a motion estimation algorithm to find the most accurate motion vectors(MVs) with the aim to maximize the encoding speed as well as the image quality. The proposed algorithm takes advantage of spatio-temporal correlations to decide the search pattern and the search start point adaptively and to avoid unnecessary motion vector search. Experiments show that the speedup improvement of the proposed algorithm over Motion Vector Field Adaptive Search Technique (MVFAST) and Predictive Motion Vector Fiekd Adaptive Search Technique (PMVFAST) can be up to 1.5 ~ 8 times faster while maintaining very similar image quality.
doi_str_mv 10.1007/11941354_56
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19992515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19992515</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-20029142795a67a25b05ec14e75a9ec4c7a5163f52a870e6c59397b758009bb83</originalsourceid><addsrcrecordid>eNpVkDtPw0AQhI-XhAmp-ANuKCgMu_f0lihKACmIAlKfztY5Mji2deeGf88loYBqZzWfdlbD2A3CPQKYB0SSKJS0Sp-wOZkyaZBkDMEpy1AjFkJIOvvnaTpnGQjgBRkpLtlVjJ8AwA3xjNHKxSl_HaZ26PNlnNqdO8hNbPtt_j7ut2Lyu3EIrssXQwi-OxDxml00rot-_jtnbLNafiyei_Xb08vicV2MHGkqeEoilClNOW0cVxUoX6P0RjnytayNU6hFo7grDXhdKxJkKqNKAKqqUszY7fHu6GLtuia4vm6jHUN6NXxbJCKuUCXu7sjFZPVbH2w1DF_RIth9d_ZPd-IHZqFZ9g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast Motion Estimation Using Spatio-temporal Correlations</title><source>Springer Books</source><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yoon, Hyo Sun ; Yoo, Jae Myeong ; Dinh, Toan Nguyen ; Son, Hwa Jeong ; Park, Mi Seon ; Lee, Guee Sang</creator><contributor>Pan, Zhigeng ; Liang, Ronghua ; Lau, Rynson W. H. ; Saito, Hideo ; Haller, Michael ; Cheok, Adrian</contributor><creatorcontrib>Yoon, Hyo Sun ; Yoo, Jae Myeong ; Dinh, Toan Nguyen ; Son, Hwa Jeong ; Park, Mi Seon ; Lee, Guee Sang ; Pan, Zhigeng ; Liang, Ronghua ; Lau, Rynson W. H. ; Saito, Hideo ; Haller, Michael ; Cheok, Adrian</creatorcontrib><description>Motion Estimation (ME) is an important part of video encoding systems, since it can significantly affect the output quality of an encoded sequences. However, ME requires a significant part of the encoding time, because ME is a combination of techniques such as motion starting point, motion search pattern, etc. For this reason, low complexity motion estimation algorithms are viable solutions. In this paper, we propose a motion estimation algorithm to find the most accurate motion vectors(MVs) with the aim to maximize the encoding speed as well as the image quality. The proposed algorithm takes advantage of spatio-temporal correlations to decide the search pattern and the search start point adaptively and to avoid unnecessary motion vector search. Experiments show that the speedup improvement of the proposed algorithm over Motion Vector Field Adaptive Search Technique (MVFAST) and Predictive Motion Vector Fiekd Adaptive Search Technique (PMVFAST) can be up to 1.5 ~ 8 times faster while maintaining very similar image quality.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540497769</identifier><identifier>ISBN: 3540497765</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540497790</identifier><identifier>EISBN: 354049779X</identifier><identifier>DOI: 10.1007/11941354_56</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Motion Estimation ; Pattern recognition. Digital image processing. Computational geometry ; Saptial Correlation ; Software ; Temporal Correlation</subject><ispartof>Advances in Artificial Reality and Tele-Existence, 2006, p.548-556</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11941354_56$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11941354_56$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19992515$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pan, Zhigeng</contributor><contributor>Liang, Ronghua</contributor><contributor>Lau, Rynson W. H.</contributor><contributor>Saito, Hideo</contributor><contributor>Haller, Michael</contributor><contributor>Cheok, Adrian</contributor><creatorcontrib>Yoon, Hyo Sun</creatorcontrib><creatorcontrib>Yoo, Jae Myeong</creatorcontrib><creatorcontrib>Dinh, Toan Nguyen</creatorcontrib><creatorcontrib>Son, Hwa Jeong</creatorcontrib><creatorcontrib>Park, Mi Seon</creatorcontrib><creatorcontrib>Lee, Guee Sang</creatorcontrib><title>Fast Motion Estimation Using Spatio-temporal Correlations</title><title>Advances in Artificial Reality and Tele-Existence</title><description>Motion Estimation (ME) is an important part of video encoding systems, since it can significantly affect the output quality of an encoded sequences. However, ME requires a significant part of the encoding time, because ME is a combination of techniques such as motion starting point, motion search pattern, etc. For this reason, low complexity motion estimation algorithms are viable solutions. In this paper, we propose a motion estimation algorithm to find the most accurate motion vectors(MVs) with the aim to maximize the encoding speed as well as the image quality. The proposed algorithm takes advantage of spatio-temporal correlations to decide the search pattern and the search start point adaptively and to avoid unnecessary motion vector search. Experiments show that the speedup improvement of the proposed algorithm over Motion Vector Field Adaptive Search Technique (MVFAST) and Predictive Motion Vector Fiekd Adaptive Search Technique (PMVFAST) can be up to 1.5 ~ 8 times faster while maintaining very similar image quality.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Motion Estimation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Saptial Correlation</subject><subject>Software</subject><subject>Temporal Correlation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540497769</isbn><isbn>3540497765</isbn><isbn>9783540497790</isbn><isbn>354049779X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkDtPw0AQhI-XhAmp-ANuKCgMu_f0lihKACmIAlKfztY5Mji2deeGf88loYBqZzWfdlbD2A3CPQKYB0SSKJS0Sp-wOZkyaZBkDMEpy1AjFkJIOvvnaTpnGQjgBRkpLtlVjJ8AwA3xjNHKxSl_HaZ26PNlnNqdO8hNbPtt_j7ut2Lyu3EIrssXQwi-OxDxml00rot-_jtnbLNafiyei_Xb08vicV2MHGkqeEoilClNOW0cVxUoX6P0RjnytayNU6hFo7grDXhdKxJkKqNKAKqqUszY7fHu6GLtuia4vm6jHUN6NXxbJCKuUCXu7sjFZPVbH2w1DF_RIth9d_ZPd-IHZqFZ9g</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Yoon, Hyo Sun</creator><creator>Yoo, Jae Myeong</creator><creator>Dinh, Toan Nguyen</creator><creator>Son, Hwa Jeong</creator><creator>Park, Mi Seon</creator><creator>Lee, Guee Sang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Fast Motion Estimation Using Spatio-temporal Correlations</title><author>Yoon, Hyo Sun ; Yoo, Jae Myeong ; Dinh, Toan Nguyen ; Son, Hwa Jeong ; Park, Mi Seon ; Lee, Guee Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-20029142795a67a25b05ec14e75a9ec4c7a5163f52a870e6c59397b758009bb83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Motion Estimation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Saptial Correlation</topic><topic>Software</topic><topic>Temporal Correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Hyo Sun</creatorcontrib><creatorcontrib>Yoo, Jae Myeong</creatorcontrib><creatorcontrib>Dinh, Toan Nguyen</creatorcontrib><creatorcontrib>Son, Hwa Jeong</creatorcontrib><creatorcontrib>Park, Mi Seon</creatorcontrib><creatorcontrib>Lee, Guee Sang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Hyo Sun</au><au>Yoo, Jae Myeong</au><au>Dinh, Toan Nguyen</au><au>Son, Hwa Jeong</au><au>Park, Mi Seon</au><au>Lee, Guee Sang</au><au>Pan, Zhigeng</au><au>Liang, Ronghua</au><au>Lau, Rynson W. H.</au><au>Saito, Hideo</au><au>Haller, Michael</au><au>Cheok, Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast Motion Estimation Using Spatio-temporal Correlations</atitle><btitle>Advances in Artificial Reality and Tele-Existence</btitle><date>2006</date><risdate>2006</risdate><spage>548</spage><epage>556</epage><pages>548-556</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540497769</isbn><isbn>3540497765</isbn><eisbn>9783540497790</eisbn><eisbn>354049779X</eisbn><abstract>Motion Estimation (ME) is an important part of video encoding systems, since it can significantly affect the output quality of an encoded sequences. However, ME requires a significant part of the encoding time, because ME is a combination of techniques such as motion starting point, motion search pattern, etc. For this reason, low complexity motion estimation algorithms are viable solutions. In this paper, we propose a motion estimation algorithm to find the most accurate motion vectors(MVs) with the aim to maximize the encoding speed as well as the image quality. The proposed algorithm takes advantage of spatio-temporal correlations to decide the search pattern and the search start point adaptively and to avoid unnecessary motion vector search. Experiments show that the speedup improvement of the proposed algorithm over Motion Vector Field Adaptive Search Technique (MVFAST) and Predictive Motion Vector Fiekd Adaptive Search Technique (PMVFAST) can be up to 1.5 ~ 8 times faster while maintaining very similar image quality.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11941354_56</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Artificial Reality and Tele-Existence, 2006, p.548-556
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19992515
source Springer Books; IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Motion Estimation
Pattern recognition. Digital image processing. Computational geometry
Saptial Correlation
Software
Temporal Correlation
title Fast Motion Estimation Using Spatio-temporal Correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20Motion%20Estimation%20Using%20Spatio-temporal%20Correlations&rft.btitle=Advances%20in%20Artificial%20Reality%20and%20Tele-Existence&rft.au=Yoon,%20Hyo%20Sun&rft.date=2006&rft.spage=548&rft.epage=556&rft.pages=548-556&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540497769&rft.isbn_list=3540497765&rft_id=info:doi/10.1007/11941354_56&rft_dat=%3Cpascalfrancis_sprin%3E19992515%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540497790&rft.eisbn_list=354049779X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true