An Edge-Preserving Multigrid-Like Technique for Image Denoising

Techniques based on the Well-Balanced Flow Equation have been employed as efficient tools for edge preserving noise removal. Although effective, this technique demands high computational effort, rendering it not practical in several applications. This work aims at proposing a multigrid like techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ferraz, Carolina Toledo, Nonato, Luis Gustavo, Cuminato, José Alberto
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue
container_start_page 126
container_title
container_volume
creator Ferraz, Carolina Toledo
Nonato, Luis Gustavo
Cuminato, José Alberto
description Techniques based on the Well-Balanced Flow Equation have been employed as efficient tools for edge preserving noise removal. Although effective, this technique demands high computational effort, rendering it not practical in several applications. This work aims at proposing a multigrid like technique for speeding up the solution of the Well-Balanced Flow equation. In fact, the diffusion equation is solved in a coarse grid and a coarse-to-fine error correction is applied in order to generate the desired solution. The transfer between coarser and finer grids is made by the Mitchell-Filter, a well known interpolation scheme that is designed for preserving edges. Numerical results are compared quantitative and qualitatively with other approaches, showing that our method produces similar image quality with much smaller computational time.
doi_str_mv 10.1007/11867586_12
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19991865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19991865</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-cd494f10640b30237199ce883190e7475cd0a143b4c913a044ad0efdd371e4b53</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRFuY-ANZGBgM7xs7cTwhVApUKoKhzJZjO8G0TYrdIvHvcVUkmG64R6e7I-QC4RoBxA1iVYqiKhXmB2TICg6cV5LxQzLAEpEyxuXRn4HVMRkAg5xKwdkpGcb4AQC5kPmA3N512cS2jr4GF1348l2bPW-XG98Gb-nML1w2d-a9859blzV9yKYr3brs3nW9jwk-IyeNXkZ3_qsj8vYwmY-f6OzlcTq-m9F1jnJDjeWSNwglhzo1YQKlNK6qGEpwgovCWNDIWc2NRKZTb23BNdYm0vG6YCNyuc9d62j0sgm6Mz6qdfArHb5Viks7yx13tedisrrWBVX3_SIqBLX7Tv37jv0AoANabg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Edge-Preserving Multigrid-Like Technique for Image Denoising</title><source>Springer Books</source><creator>Ferraz, Carolina Toledo ; Nonato, Luis Gustavo ; Cuminato, José Alberto</creator><contributor>Campilho, Aurélio ; Kamel, Mohamed S.</contributor><creatorcontrib>Ferraz, Carolina Toledo ; Nonato, Luis Gustavo ; Cuminato, José Alberto ; Campilho, Aurélio ; Kamel, Mohamed S.</creatorcontrib><description>Techniques based on the Well-Balanced Flow Equation have been employed as efficient tools for edge preserving noise removal. Although effective, this technique demands high computational effort, rendering it not practical in several applications. This work aims at proposing a multigrid like technique for speeding up the solution of the Well-Balanced Flow equation. In fact, the diffusion equation is solved in a coarse grid and a coarse-to-fine error correction is applied in order to generate the desired solution. The transfer between coarser and finer grids is made by the Mitchell-Filter, a well known interpolation scheme that is designed for preserving edges. Numerical results are compared quantitative and qualitatively with other approaches, showing that our method produces similar image quality with much smaller computational time.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540448918</identifier><identifier>ISBN: 9783540448914</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540448934</identifier><identifier>EISBN: 9783540448938</identifier><identifier>DOI: 10.1007/11867586_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Coarse Grid ; Computer science; control theory; systems ; Edge Detection ; Exact sciences and technology ; Image Denoising ; Multigrid Method ; Noisy Image ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Image Analysis and Recognition, 2006, p.126-137</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11867586_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11867586_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19991865$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Campilho, Aurélio</contributor><contributor>Kamel, Mohamed S.</contributor><creatorcontrib>Ferraz, Carolina Toledo</creatorcontrib><creatorcontrib>Nonato, Luis Gustavo</creatorcontrib><creatorcontrib>Cuminato, José Alberto</creatorcontrib><title>An Edge-Preserving Multigrid-Like Technique for Image Denoising</title><title>Image Analysis and Recognition</title><description>Techniques based on the Well-Balanced Flow Equation have been employed as efficient tools for edge preserving noise removal. Although effective, this technique demands high computational effort, rendering it not practical in several applications. This work aims at proposing a multigrid like technique for speeding up the solution of the Well-Balanced Flow equation. In fact, the diffusion equation is solved in a coarse grid and a coarse-to-fine error correction is applied in order to generate the desired solution. The transfer between coarser and finer grids is made by the Mitchell-Filter, a well known interpolation scheme that is designed for preserving edges. Numerical results are compared quantitative and qualitatively with other approaches, showing that our method produces similar image quality with much smaller computational time.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Coarse Grid</subject><subject>Computer science; control theory; systems</subject><subject>Edge Detection</subject><subject>Exact sciences and technology</subject><subject>Image Denoising</subject><subject>Multigrid Method</subject><subject>Noisy Image</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540448918</isbn><isbn>9783540448914</isbn><isbn>3540448934</isbn><isbn>9783540448938</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRFuY-ANZGBgM7xs7cTwhVApUKoKhzJZjO8G0TYrdIvHvcVUkmG64R6e7I-QC4RoBxA1iVYqiKhXmB2TICg6cV5LxQzLAEpEyxuXRn4HVMRkAg5xKwdkpGcb4AQC5kPmA3N512cS2jr4GF1348l2bPW-XG98Gb-nML1w2d-a9859blzV9yKYr3brs3nW9jwk-IyeNXkZ3_qsj8vYwmY-f6OzlcTq-m9F1jnJDjeWSNwglhzo1YQKlNK6qGEpwgovCWNDIWc2NRKZTb23BNdYm0vG6YCNyuc9d62j0sgm6Mz6qdfArHb5Viks7yx13tedisrrWBVX3_SIqBLX7Tv37jv0AoANabg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ferraz, Carolina Toledo</creator><creator>Nonato, Luis Gustavo</creator><creator>Cuminato, José Alberto</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>An Edge-Preserving Multigrid-Like Technique for Image Denoising</title><author>Ferraz, Carolina Toledo ; Nonato, Luis Gustavo ; Cuminato, José Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-cd494f10640b30237199ce883190e7475cd0a143b4c913a044ad0efdd371e4b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Coarse Grid</topic><topic>Computer science; control theory; systems</topic><topic>Edge Detection</topic><topic>Exact sciences and technology</topic><topic>Image Denoising</topic><topic>Multigrid Method</topic><topic>Noisy Image</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferraz, Carolina Toledo</creatorcontrib><creatorcontrib>Nonato, Luis Gustavo</creatorcontrib><creatorcontrib>Cuminato, José Alberto</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraz, Carolina Toledo</au><au>Nonato, Luis Gustavo</au><au>Cuminato, José Alberto</au><au>Campilho, Aurélio</au><au>Kamel, Mohamed S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Edge-Preserving Multigrid-Like Technique for Image Denoising</atitle><btitle>Image Analysis and Recognition</btitle><date>2006</date><risdate>2006</risdate><spage>126</spage><epage>137</epage><pages>126-137</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540448918</isbn><isbn>9783540448914</isbn><eisbn>3540448934</eisbn><eisbn>9783540448938</eisbn><abstract>Techniques based on the Well-Balanced Flow Equation have been employed as efficient tools for edge preserving noise removal. Although effective, this technique demands high computational effort, rendering it not practical in several applications. This work aims at proposing a multigrid like technique for speeding up the solution of the Well-Balanced Flow equation. In fact, the diffusion equation is solved in a coarse grid and a coarse-to-fine error correction is applied in order to generate the desired solution. The transfer between coarser and finer grids is made by the Mitchell-Filter, a well known interpolation scheme that is designed for preserving edges. Numerical results are compared quantitative and qualitatively with other approaches, showing that our method produces similar image quality with much smaller computational time.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11867586_12</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Image Analysis and Recognition, 2006, p.126-137
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19991865
source Springer Books
subjects Applied sciences
Artificial intelligence
Coarse Grid
Computer science
control theory
systems
Edge Detection
Exact sciences and technology
Image Denoising
Multigrid Method
Noisy Image
Pattern recognition. Digital image processing. Computational geometry
title An Edge-Preserving Multigrid-Like Technique for Image Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Edge-Preserving%20Multigrid-Like%20Technique%20for%20Image%20Denoising&rft.btitle=Image%20Analysis%20and%20Recognition&rft.au=Ferraz,%20Carolina%20Toledo&rft.date=2006&rft.spage=126&rft.epage=137&rft.pages=126-137&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540448918&rft.isbn_list=9783540448914&rft_id=info:doi/10.1007/11867586_12&rft_dat=%3Cpascalfrancis_sprin%3E19991865%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540448934&rft.eisbn_list=9783540448938&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true