A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem

This research extends the sub-population genetic algorithm and combines it with a global archive and an adaptive strategy to solve the multi-objective parallel scheduling problems. In this approach, the global archive is applied within each subpopulation and once a better Pareto solution is identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chang, Pei-Chann, Chen, Shih-Hsin, Hsieh, Jih-Chang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue
container_start_page 730
container_title
container_volume
creator Chang, Pei-Chann
Chen, Shih-Hsin
Hsieh, Jih-Chang
description This research extends the sub-population genetic algorithm and combines it with a global archive and an adaptive strategy to solve the multi-objective parallel scheduling problems. In this approach, the global archive is applied within each subpopulation and once a better Pareto solution is identified, other subpopulations are able to employ this Pareto solution to further guide the searching direction. In addition, the crossover and mutation rates are continuously adapted according to the performance of the current generation. As a result, the convergence and diversity of the evolutionary processes can be maintained in a very efficient manner. Intensive experimental results indicate that the sub-population genetic algorithm combing the global archive and the adaptive strategy outperforms NSGA II and SPEA II approaches.
doi_str_mv 10.1007/11881070_98
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19970793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19970793</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-86dae992bf1ed28becd2647104193434633045bdb99fdb5b4711555545d92c9a3</originalsourceid><addsrcrecordid>eNpVkT1PwzAQhs2XRFU68Qe8MDAEfLHzcWNUQUEqohIwR3bipC5uEjkJqBN_HdMywA13w_PolU4vIZfAboCx5BYgTYElLMf0iMwwSXkkmIiQhfExmUAMEHAu8OQfAzwlE8ZZGGAi-DmZ9f2G-eEQszCZkK-MLmyrpKWZK9bmQ9OXUQWrthutHEzb0IVu9GAKmtm6dWZYb-mn3zQrZTfs9cHJQdc7ahr6NNrBBK3a6GLPVtJJa7UNnqTPbrxcrHU5WtPUdOVaZfX2gpxV0vZ69nun5O3-7nX-ECyfF4_zbBl0IeAQpHEpNWKoKtBlmCpdlGEsEmACkAsuYs79u6pUiFWpIuURRH5EVGJYoORTcnXI7WRfSFs52RSmzztnttLtckBMWILce9cHr_eoqbXLVdu-9zmw_KeE_E8J_BveSHRh</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem</title><source>Springer Books</source><creator>Chang, Pei-Chann ; Chen, Shih-Hsin ; Hsieh, Jih-Chang</creator><contributor>Wu, Feng ; Liu, Jing ; Wang, Lipo ; Gao, Xin-bo ; Jiao, Licheng</contributor><creatorcontrib>Chang, Pei-Chann ; Chen, Shih-Hsin ; Hsieh, Jih-Chang ; Wu, Feng ; Liu, Jing ; Wang, Lipo ; Gao, Xin-bo ; Jiao, Licheng</creatorcontrib><description>This research extends the sub-population genetic algorithm and combines it with a global archive and an adaptive strategy to solve the multi-objective parallel scheduling problems. In this approach, the global archive is applied within each subpopulation and once a better Pareto solution is identified, other subpopulations are able to employ this Pareto solution to further guide the searching direction. In addition, the crossover and mutation rates are continuously adapted according to the performance of the current generation. As a result, the convergence and diversity of the evolutionary processes can be maintained in a very efficient manner. Intensive experimental results indicate that the sub-population genetic algorithm combing the global archive and the adaptive strategy outperforms NSGA II and SPEA II approaches.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540459019</identifier><identifier>ISBN: 3540459014</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540459026</identifier><identifier>EISBN: 3540459022</identifier><identifier>DOI: 10.1007/11881070_98</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive Strategy ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Genetic Algorithm ; Multiobjective Optimization ; Parallel Machine ; Schedule Problem ; Theoretical computing</subject><ispartof>Advances in Natural Computation, 2006, p.730-739</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11881070_98$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11881070_98$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19970793$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Wu, Feng</contributor><contributor>Liu, Jing</contributor><contributor>Wang, Lipo</contributor><contributor>Gao, Xin-bo</contributor><contributor>Jiao, Licheng</contributor><creatorcontrib>Chang, Pei-Chann</creatorcontrib><creatorcontrib>Chen, Shih-Hsin</creatorcontrib><creatorcontrib>Hsieh, Jih-Chang</creatorcontrib><title>A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem</title><title>Advances in Natural Computation</title><description>This research extends the sub-population genetic algorithm and combines it with a global archive and an adaptive strategy to solve the multi-objective parallel scheduling problems. In this approach, the global archive is applied within each subpopulation and once a better Pareto solution is identified, other subpopulations are able to employ this Pareto solution to further guide the searching direction. In addition, the crossover and mutation rates are continuously adapted according to the performance of the current generation. As a result, the convergence and diversity of the evolutionary processes can be maintained in a very efficient manner. Intensive experimental results indicate that the sub-population genetic algorithm combing the global archive and the adaptive strategy outperforms NSGA II and SPEA II approaches.</description><subject>Adaptive Strategy</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Multiobjective Optimization</subject><subject>Parallel Machine</subject><subject>Schedule Problem</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540459019</isbn><isbn>3540459014</isbn><isbn>9783540459026</isbn><isbn>3540459022</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkT1PwzAQhs2XRFU68Qe8MDAEfLHzcWNUQUEqohIwR3bipC5uEjkJqBN_HdMywA13w_PolU4vIZfAboCx5BYgTYElLMf0iMwwSXkkmIiQhfExmUAMEHAu8OQfAzwlE8ZZGGAi-DmZ9f2G-eEQszCZkK-MLmyrpKWZK9bmQ9OXUQWrthutHEzb0IVu9GAKmtm6dWZYb-mn3zQrZTfs9cHJQdc7ahr6NNrBBK3a6GLPVtJJa7UNnqTPbrxcrHU5WtPUdOVaZfX2gpxV0vZ69nun5O3-7nX-ECyfF4_zbBl0IeAQpHEpNWKoKtBlmCpdlGEsEmACkAsuYs79u6pUiFWpIuURRH5EVGJYoORTcnXI7WRfSFs52RSmzztnttLtckBMWILce9cHr_eoqbXLVdu-9zmw_KeE_E8J_BveSHRh</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Chang, Pei-Chann</creator><creator>Chen, Shih-Hsin</creator><creator>Hsieh, Jih-Chang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem</title><author>Chang, Pei-Chann ; Chen, Shih-Hsin ; Hsieh, Jih-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-86dae992bf1ed28becd2647104193434633045bdb99fdb5b4711555545d92c9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive Strategy</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Multiobjective Optimization</topic><topic>Parallel Machine</topic><topic>Schedule Problem</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Pei-Chann</creatorcontrib><creatorcontrib>Chen, Shih-Hsin</creatorcontrib><creatorcontrib>Hsieh, Jih-Chang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Pei-Chann</au><au>Chen, Shih-Hsin</au><au>Hsieh, Jih-Chang</au><au>Wu, Feng</au><au>Liu, Jing</au><au>Wang, Lipo</au><au>Gao, Xin-bo</au><au>Jiao, Licheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem</atitle><btitle>Advances in Natural Computation</btitle><date>2006</date><risdate>2006</risdate><spage>730</spage><epage>739</epage><pages>730-739</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540459019</isbn><isbn>3540459014</isbn><eisbn>9783540459026</eisbn><eisbn>3540459022</eisbn><abstract>This research extends the sub-population genetic algorithm and combines it with a global archive and an adaptive strategy to solve the multi-objective parallel scheduling problems. In this approach, the global archive is applied within each subpopulation and once a better Pareto solution is identified, other subpopulations are able to employ this Pareto solution to further guide the searching direction. In addition, the crossover and mutation rates are continuously adapted according to the performance of the current generation. As a result, the convergence and diversity of the evolutionary processes can be maintained in a very efficient manner. Intensive experimental results indicate that the sub-population genetic algorithm combing the global archive and the adaptive strategy outperforms NSGA II and SPEA II approaches.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11881070_98</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Natural Computation, 2006, p.730-739
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19970793
source Springer Books
subjects Adaptive Strategy
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Genetic Algorithm
Multiobjective Optimization
Parallel Machine
Schedule Problem
Theoretical computing
title A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Global%20Archive%20Sub-Population%20Genetic%20Algorithm%20with%20Adaptive%20Strategy%20in%20Multi-objective%20Parallel-Machine%20Scheduling%20Problem&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Chang,%20Pei-Chann&rft.date=2006&rft.spage=730&rft.epage=739&rft.pages=730-739&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540459019&rft.isbn_list=3540459014&rft_id=info:doi/10.1007/11881070_98&rft_dat=%3Cpascalfrancis_sprin%3E19970793%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540459026&rft.eisbn_list=3540459022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true