SOC Dynamic Power Management Using Artificial Neural Network
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We propo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 564 |
---|---|
container_issue | |
container_start_page | 555 |
container_title | |
container_volume | |
creator | Lu, Huaxiang Lu, Yan Tang, Zhifang Wang, Shoujue |
description | Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM. |
doi_str_mv | 10.1007/11881070_76 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19970771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19970771</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4b43c6cbf49d7cf719a7131bcf9a126066b69847cc62f62da14c6b17ec6eaecd3</originalsourceid><addsrcrecordid>eNpVkL1OwzAYRc2fRFUy8QJZGBgC32e7diyxVOVXKhQJOluOY1emaVLZQVXfnkIZ4C53OFdnuIScI1whgLxGLEsECVqKA5IpWbIRBz5SQMUhGaBALBjj6ugfQ3VMBsCAFkpydkqylD5gF4YCqByQm7fZJL_dtmYVbP7abVzMn01rFm7l2j6fp9Au8nHsgw82mCZ_cZ_xp_pNF5dn5MSbJrnst4dkfn_3PnksprOHp8l4Wqwpqr7gFWdW2MpzVUvrJSojkWFlvTJIBQhRCVVyaa2gXtDaILeiQumscMbZmg3Jxd67NsmaxkfT2pD0OoaViVuNSkmQO-WQXO53aYfahYu66rpl0gj6-0H950H2BVMoXHU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SOC Dynamic Power Management Using Artificial Neural Network</title><source>Springer Books</source><creator>Lu, Huaxiang ; Lu, Yan ; Tang, Zhifang ; Wang, Shoujue</creator><contributor>Wu, Feng ; Liu, Jing ; Wang, Lipo ; Gao, Xin-bo ; Jiao, Licheng</contributor><creatorcontrib>Lu, Huaxiang ; Lu, Yan ; Tang, Zhifang ; Wang, Shoujue ; Wu, Feng ; Liu, Jing ; Wang, Lipo ; Gao, Xin-bo ; Jiao, Licheng</creatorcontrib><description>Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540459019</identifier><identifier>ISBN: 3540459014</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540459026</identifier><identifier>EISBN: 3540459022</identifier><identifier>DOI: 10.1007/11881070_76</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial Neural Network ; Back Propagation Network ; Computer science; control theory; systems ; Exact sciences and technology ; Idle Period ; Idle Time ; Power Management ; Theoretical computing</subject><ispartof>Advances in Natural Computation, 2006, p.555-564</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11881070_76$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11881070_76$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19970771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Wu, Feng</contributor><contributor>Liu, Jing</contributor><contributor>Wang, Lipo</contributor><contributor>Gao, Xin-bo</contributor><contributor>Jiao, Licheng</contributor><creatorcontrib>Lu, Huaxiang</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Tang, Zhifang</creatorcontrib><creatorcontrib>Wang, Shoujue</creatorcontrib><title>SOC Dynamic Power Management Using Artificial Neural Network</title><title>Advances in Natural Computation</title><description>Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial Neural Network</subject><subject>Back Propagation Network</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Idle Period</subject><subject>Idle Time</subject><subject>Power Management</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540459019</isbn><isbn>3540459014</isbn><isbn>9783540459026</isbn><isbn>3540459022</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkL1OwzAYRc2fRFUy8QJZGBgC32e7diyxVOVXKhQJOluOY1emaVLZQVXfnkIZ4C53OFdnuIScI1whgLxGLEsECVqKA5IpWbIRBz5SQMUhGaBALBjj6ugfQ3VMBsCAFkpydkqylD5gF4YCqByQm7fZJL_dtmYVbP7abVzMn01rFm7l2j6fp9Au8nHsgw82mCZ_cZ_xp_pNF5dn5MSbJrnst4dkfn_3PnksprOHp8l4Wqwpqr7gFWdW2MpzVUvrJSojkWFlvTJIBQhRCVVyaa2gXtDaILeiQumscMbZmg3Jxd67NsmaxkfT2pD0OoaViVuNSkmQO-WQXO53aYfahYu66rpl0gj6-0H950H2BVMoXHU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lu, Huaxiang</creator><creator>Lu, Yan</creator><creator>Tang, Zhifang</creator><creator>Wang, Shoujue</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>SOC Dynamic Power Management Using Artificial Neural Network</title><author>Lu, Huaxiang ; Lu, Yan ; Tang, Zhifang ; Wang, Shoujue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4b43c6cbf49d7cf719a7131bcf9a126066b69847cc62f62da14c6b17ec6eaecd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial Neural Network</topic><topic>Back Propagation Network</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Idle Period</topic><topic>Idle Time</topic><topic>Power Management</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Huaxiang</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Tang, Zhifang</creatorcontrib><creatorcontrib>Wang, Shoujue</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Huaxiang</au><au>Lu, Yan</au><au>Tang, Zhifang</au><au>Wang, Shoujue</au><au>Wu, Feng</au><au>Liu, Jing</au><au>Wang, Lipo</au><au>Gao, Xin-bo</au><au>Jiao, Licheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SOC Dynamic Power Management Using Artificial Neural Network</atitle><btitle>Advances in Natural Computation</btitle><date>2006</date><risdate>2006</risdate><spage>555</spage><epage>564</epage><pages>555-564</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540459019</isbn><isbn>3540459014</isbn><eisbn>9783540459026</eisbn><eisbn>3540459022</eisbn><abstract>Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11881070_76</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Natural Computation, 2006, p.555-564 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19970771 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial Neural Network Back Propagation Network Computer science control theory systems Exact sciences and technology Idle Period Idle Time Power Management Theoretical computing |
title | SOC Dynamic Power Management Using Artificial Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SOC%20Dynamic%20Power%20Management%20Using%20Artificial%20Neural%20Network&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Lu,%20Huaxiang&rft.date=2006&rft.spage=555&rft.epage=564&rft.pages=555-564&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540459019&rft.isbn_list=3540459014&rft_id=info:doi/10.1007/11881070_76&rft_dat=%3Cpascalfrancis_sprin%3E19970771%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540459026&rft.eisbn_list=3540459022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |