SOC Dynamic Power Management Using Artificial Neural Network

Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lu, Huaxiang, Lu, Yan, Tang, Zhifang, Wang, Shoujue
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue
container_start_page 555
container_title
container_volume
creator Lu, Huaxiang
Lu, Yan
Tang, Zhifang
Wang, Shoujue
description Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
doi_str_mv 10.1007/11881070_76
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19970771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19970771</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4b43c6cbf49d7cf719a7131bcf9a126066b69847cc62f62da14c6b17ec6eaecd3</originalsourceid><addsrcrecordid>eNpVkL1OwzAYRc2fRFUy8QJZGBgC32e7diyxVOVXKhQJOluOY1emaVLZQVXfnkIZ4C53OFdnuIScI1whgLxGLEsECVqKA5IpWbIRBz5SQMUhGaBALBjj6ugfQ3VMBsCAFkpydkqylD5gF4YCqByQm7fZJL_dtmYVbP7abVzMn01rFm7l2j6fp9Au8nHsgw82mCZ_cZ_xp_pNF5dn5MSbJrnst4dkfn_3PnksprOHp8l4Wqwpqr7gFWdW2MpzVUvrJSojkWFlvTJIBQhRCVVyaa2gXtDaILeiQumscMbZmg3Jxd67NsmaxkfT2pD0OoaViVuNSkmQO-WQXO53aYfahYu66rpl0gj6-0H950H2BVMoXHU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SOC Dynamic Power Management Using Artificial Neural Network</title><source>Springer Books</source><creator>Lu, Huaxiang ; Lu, Yan ; Tang, Zhifang ; Wang, Shoujue</creator><contributor>Wu, Feng ; Liu, Jing ; Wang, Lipo ; Gao, Xin-bo ; Jiao, Licheng</contributor><creatorcontrib>Lu, Huaxiang ; Lu, Yan ; Tang, Zhifang ; Wang, Shoujue ; Wu, Feng ; Liu, Jing ; Wang, Lipo ; Gao, Xin-bo ; Jiao, Licheng</creatorcontrib><description>Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540459019</identifier><identifier>ISBN: 3540459014</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540459026</identifier><identifier>EISBN: 3540459022</identifier><identifier>DOI: 10.1007/11881070_76</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial Neural Network ; Back Propagation Network ; Computer science; control theory; systems ; Exact sciences and technology ; Idle Period ; Idle Time ; Power Management ; Theoretical computing</subject><ispartof>Advances in Natural Computation, 2006, p.555-564</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11881070_76$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11881070_76$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19970771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Wu, Feng</contributor><contributor>Liu, Jing</contributor><contributor>Wang, Lipo</contributor><contributor>Gao, Xin-bo</contributor><contributor>Jiao, Licheng</contributor><creatorcontrib>Lu, Huaxiang</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Tang, Zhifang</creatorcontrib><creatorcontrib>Wang, Shoujue</creatorcontrib><title>SOC Dynamic Power Management Using Artificial Neural Network</title><title>Advances in Natural Computation</title><description>Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial Neural Network</subject><subject>Back Propagation Network</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Idle Period</subject><subject>Idle Time</subject><subject>Power Management</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540459019</isbn><isbn>3540459014</isbn><isbn>9783540459026</isbn><isbn>3540459022</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkL1OwzAYRc2fRFUy8QJZGBgC32e7diyxVOVXKhQJOluOY1emaVLZQVXfnkIZ4C53OFdnuIScI1whgLxGLEsECVqKA5IpWbIRBz5SQMUhGaBALBjj6ugfQ3VMBsCAFkpydkqylD5gF4YCqByQm7fZJL_dtmYVbP7abVzMn01rFm7l2j6fp9Au8nHsgw82mCZ_cZ_xp_pNF5dn5MSbJrnst4dkfn_3PnksprOHp8l4Wqwpqr7gFWdW2MpzVUvrJSojkWFlvTJIBQhRCVVyaa2gXtDaILeiQumscMbZmg3Jxd67NsmaxkfT2pD0OoaViVuNSkmQO-WQXO53aYfahYu66rpl0gj6-0H950H2BVMoXHU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lu, Huaxiang</creator><creator>Lu, Yan</creator><creator>Tang, Zhifang</creator><creator>Wang, Shoujue</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>SOC Dynamic Power Management Using Artificial Neural Network</title><author>Lu, Huaxiang ; Lu, Yan ; Tang, Zhifang ; Wang, Shoujue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4b43c6cbf49d7cf719a7131bcf9a126066b69847cc62f62da14c6b17ec6eaecd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial Neural Network</topic><topic>Back Propagation Network</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Idle Period</topic><topic>Idle Time</topic><topic>Power Management</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Huaxiang</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Tang, Zhifang</creatorcontrib><creatorcontrib>Wang, Shoujue</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Huaxiang</au><au>Lu, Yan</au><au>Tang, Zhifang</au><au>Wang, Shoujue</au><au>Wu, Feng</au><au>Liu, Jing</au><au>Wang, Lipo</au><au>Gao, Xin-bo</au><au>Jiao, Licheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SOC Dynamic Power Management Using Artificial Neural Network</atitle><btitle>Advances in Natural Computation</btitle><date>2006</date><risdate>2006</risdate><spage>555</spage><epage>564</epage><pages>555-564</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540459019</isbn><isbn>3540459014</isbn><eisbn>9783540459026</eisbn><eisbn>3540459022</eisbn><abstract>Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques — BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11881070_76</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Natural Computation, 2006, p.555-564
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19970771
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial Neural Network
Back Propagation Network
Computer science
control theory
systems
Exact sciences and technology
Idle Period
Idle Time
Power Management
Theoretical computing
title SOC Dynamic Power Management Using Artificial Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SOC%20Dynamic%20Power%20Management%20Using%20Artificial%20Neural%20Network&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Lu,%20Huaxiang&rft.date=2006&rft.spage=555&rft.epage=564&rft.pages=555-564&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540459019&rft.isbn_list=3540459014&rft_id=info:doi/10.1007/11881070_76&rft_dat=%3Cpascalfrancis_sprin%3E19970771%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540459026&rft.eisbn_list=3540459022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true