Measuring GNG Topology Preservation in Computer Vision Applications
Self-organizing neural networks try to preserve the topology of an input space by means of their competitive learning. This capacity has been used, among others, for the representation of objects and their motion. In addition, these applications usually have real-time constraints. In this work we ha...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | |
container_start_page | 424 |
container_title | |
container_volume | |
creator | Rodríguez, José García Flórez-Revuelta, Francisco Chamizo, Juan Manuel García |
description | Self-organizing neural networks try to preserve the topology of an input space by means of their competitive learning. This capacity has been used, among others, for the representation of objects and their motion. In addition, these applications usually have real-time constraints. In this work we have study a kind of self-organizing network, the Growing Neural Gas with different parameters, to represent different objects. In some cases, topology preservation is lost and, therefore, the quality of the representation. So, we have made a study to quantify topology preservation to establish the most suitable learning parameters, depending on the kind of objects to represent and the size of the network. |
doi_str_mv | 10.1007/11893011_54 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19970342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19970342</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-362d231642e76ab1923bf821e685f01f8b58550d9abcc6e350ae9d78ce77b6833</originalsourceid><addsrcrecordid>eNpNkE1Lw0AYhNcvsK09-Qdy8eAh-r77vccSahXqx6F6DZt0U1bTZNlthf57rVXwNDDzMDBDyCXCDQKoW0RtGCCWgh-RsVGaCQ5cCs7VMRmgRMwZ4-aEDP8CiqdkAAxobhRn52SY0jsAUGXogBSPzqZt9N0qmz3NskUf-rZf7bKX6JKLn3bj-y7zXVb067DduJi9-bS3JiG0vv6J0wU5a2yb3PhXR-T1broo7vP58-yhmMzzQNFscibpkjKUnDolbYWGsqrRFJ3UogFsdCW0ELA0tqpr6ZgA68xS6dopVUnN2IhcHXqDTbVtm2i72qcyRL-2cVeiMQoYp9_c9YFLYT_MxbLq-49UIpT7C8t_F7Iv42Fdfg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Measuring GNG Topology Preservation in Computer Vision Applications</title><source>Springer Books</source><creator>Rodríguez, José García ; Flórez-Revuelta, Francisco ; Chamizo, Juan Manuel García</creator><contributor>Gabrys, Bogdan ; Jain, Lakhmi C. ; Howlett, Robert J.</contributor><creatorcontrib>Rodríguez, José García ; Flórez-Revuelta, Francisco ; Chamizo, Juan Manuel García ; Gabrys, Bogdan ; Jain, Lakhmi C. ; Howlett, Robert J.</creatorcontrib><description>Self-organizing neural networks try to preserve the topology of an input space by means of their competitive learning. This capacity has been used, among others, for the representation of objects and their motion. In addition, these applications usually have real-time constraints. In this work we have study a kind of self-organizing network, the Growing Neural Gas with different parameters, to represent different objects. In some cases, topology preservation is lost and, therefore, the quality of the representation. So, we have made a study to quantify topology preservation to establish the most suitable learning parameters, depending on the kind of objects to represent and the size of the network.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540465421</identifier><identifier>ISBN: 9783540465423</identifier><identifier>ISBN: 3540465359</identifier><identifier>ISBN: 9783540465355</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540465447</identifier><identifier>EISBN: 3540465448</identifier><identifier>DOI: 10.1007/11893011_54</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Competitive Learning ; Computer science; control theory; systems ; Computer Vision Application ; Exact sciences and technology ; Gesture Recognition ; Hand Gesture Recognition ; Information systems. Data bases ; Input Space ; Memory organisation. Data processing ; Pattern recognition. Digital image processing. Computational geometry ; Software</subject><ispartof>Knowledge-Based Intelligent Information and Engineering Systems, 2006, p.424-431</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11893011_54$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11893011_54$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19970342$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gabrys, Bogdan</contributor><contributor>Jain, Lakhmi C.</contributor><contributor>Howlett, Robert J.</contributor><creatorcontrib>Rodríguez, José García</creatorcontrib><creatorcontrib>Flórez-Revuelta, Francisco</creatorcontrib><creatorcontrib>Chamizo, Juan Manuel García</creatorcontrib><title>Measuring GNG Topology Preservation in Computer Vision Applications</title><title>Knowledge-Based Intelligent Information and Engineering Systems</title><description>Self-organizing neural networks try to preserve the topology of an input space by means of their competitive learning. This capacity has been used, among others, for the representation of objects and their motion. In addition, these applications usually have real-time constraints. In this work we have study a kind of self-organizing network, the Growing Neural Gas with different parameters, to represent different objects. In some cases, topology preservation is lost and, therefore, the quality of the representation. So, we have made a study to quantify topology preservation to establish the most suitable learning parameters, depending on the kind of objects to represent and the size of the network.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Competitive Learning</subject><subject>Computer science; control theory; systems</subject><subject>Computer Vision Application</subject><subject>Exact sciences and technology</subject><subject>Gesture Recognition</subject><subject>Hand Gesture Recognition</subject><subject>Information systems. Data bases</subject><subject>Input Space</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540465421</isbn><isbn>9783540465423</isbn><isbn>3540465359</isbn><isbn>9783540465355</isbn><isbn>9783540465447</isbn><isbn>3540465448</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1Lw0AYhNcvsK09-Qdy8eAh-r77vccSahXqx6F6DZt0U1bTZNlthf57rVXwNDDzMDBDyCXCDQKoW0RtGCCWgh-RsVGaCQ5cCs7VMRmgRMwZ4-aEDP8CiqdkAAxobhRn52SY0jsAUGXogBSPzqZt9N0qmz3NskUf-rZf7bKX6JKLn3bj-y7zXVb067DduJi9-bS3JiG0vv6J0wU5a2yb3PhXR-T1broo7vP58-yhmMzzQNFscibpkjKUnDolbYWGsqrRFJ3UogFsdCW0ELA0tqpr6ZgA68xS6dopVUnN2IhcHXqDTbVtm2i72qcyRL-2cVeiMQoYp9_c9YFLYT_MxbLq-49UIpT7C8t_F7Iv42Fdfg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Rodríguez, José García</creator><creator>Flórez-Revuelta, Francisco</creator><creator>Chamizo, Juan Manuel García</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Measuring GNG Topology Preservation in Computer Vision Applications</title><author>Rodríguez, José García ; Flórez-Revuelta, Francisco ; Chamizo, Juan Manuel García</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-362d231642e76ab1923bf821e685f01f8b58550d9abcc6e350ae9d78ce77b6833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Competitive Learning</topic><topic>Computer science; control theory; systems</topic><topic>Computer Vision Application</topic><topic>Exact sciences and technology</topic><topic>Gesture Recognition</topic><topic>Hand Gesture Recognition</topic><topic>Information systems. Data bases</topic><topic>Input Space</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, José García</creatorcontrib><creatorcontrib>Flórez-Revuelta, Francisco</creatorcontrib><creatorcontrib>Chamizo, Juan Manuel García</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, José García</au><au>Flórez-Revuelta, Francisco</au><au>Chamizo, Juan Manuel García</au><au>Gabrys, Bogdan</au><au>Jain, Lakhmi C.</au><au>Howlett, Robert J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Measuring GNG Topology Preservation in Computer Vision Applications</atitle><btitle>Knowledge-Based Intelligent Information and Engineering Systems</btitle><date>2006</date><risdate>2006</risdate><spage>424</spage><epage>431</epage><pages>424-431</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540465421</isbn><isbn>9783540465423</isbn><isbn>3540465359</isbn><isbn>9783540465355</isbn><eisbn>9783540465447</eisbn><eisbn>3540465448</eisbn><abstract>Self-organizing neural networks try to preserve the topology of an input space by means of their competitive learning. This capacity has been used, among others, for the representation of objects and their motion. In addition, these applications usually have real-time constraints. In this work we have study a kind of self-organizing network, the Growing Neural Gas with different parameters, to represent different objects. In some cases, topology preservation is lost and, therefore, the quality of the representation. So, we have made a study to quantify topology preservation to establish the most suitable learning parameters, depending on the kind of objects to represent and the size of the network.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11893011_54</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Knowledge-Based Intelligent Information and Engineering Systems, 2006, p.424-431 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19970342 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Competitive Learning Computer science control theory systems Computer Vision Application Exact sciences and technology Gesture Recognition Hand Gesture Recognition Information systems. Data bases Input Space Memory organisation. Data processing Pattern recognition. Digital image processing. Computational geometry Software |
title | Measuring GNG Topology Preservation in Computer Vision Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Measuring%20GNG%20Topology%20Preservation%20in%20Computer%20Vision%20Applications&rft.btitle=Knowledge-Based%20Intelligent%20Information%20and%20Engineering%20Systems&rft.au=Rodr%C3%ADguez,%20Jos%C3%A9%20Garc%C3%ADa&rft.date=2006&rft.spage=424&rft.epage=431&rft.pages=424-431&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540465421&rft.isbn_list=9783540465423&rft.isbn_list=3540465359&rft.isbn_list=9783540465355&rft_id=info:doi/10.1007/11893011_54&rft_dat=%3Cpascalfrancis_sprin%3E19970342%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540465447&rft.eisbn_list=3540465448&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |