Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion
Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion sys...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 776 |
---|---|
container_issue | |
container_start_page | 769 |
container_title | |
container_volume | |
creator | Kang, Sukhoon |
description | Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment. |
doi_str_mv | 10.1007/11893004_98 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19970220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19970220</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-1aa3817f0834effd8fbd17509973af6f858b911a36947060ed1e64e5bf59e1583</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhs2XRCmd-ANeGBgCd7ET22MpFCoVgURhjZzGbg1pUsWuUPvrMSpI3HLSPe89w0vIBcI1AogbRKkYAC-UPCBnLOPA84wpPCQ9zBETxrg6IgMl5B8T6pj0gEGaKMHZKRl4_wFxGMocoEfc7KtNXpbaGzqpTBOcdXMdXNvQYb1oOxeWK3obaUXjabzZ7bb01QSqm4q-t8E1C2rbjk6aYOraLaKAPm3q4BJvGh_BnQ46vvkoPCcnVtfeDH53n7yN72ejx2T6_DAZDafJOkUVEtSaSRQWJOPG2kraskKRgVKCaZtbmclSIWqWKy4gB1OhybnJSpspg5lkfXK59661n-vadrqZO1-sO7fS3bbAKII0hZi72ud8RM3CdEXZtp--QCh-ui7-dc2-Aci8a5w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</title><source>Springer Books</source><creator>Kang, Sukhoon</creator><contributor>Gabrys, Bogdan ; Jain, Lakhmi C. ; Howlett, Robert J.</contributor><creatorcontrib>Kang, Sukhoon ; Gabrys, Bogdan ; Jain, Lakhmi C. ; Howlett, Robert J.</creatorcontrib><description>Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540465379</identifier><identifier>ISBN: 3540465375</identifier><identifier>ISBN: 3540465359</identifier><identifier>ISBN: 9783540465355</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540465391</identifier><identifier>EISBN: 9783540465393</identifier><identifier>DOI: 10.1007/11893004_98</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data Fusion ; Decision theory. Utility theory ; Exact sciences and technology ; Fusion Approach ; Fusion Method ; Information systems. Data bases ; Memory organisation. Data processing ; Operational research and scientific management ; Operational research. Management science ; Reliability theory. Replacement problems ; Software ; Threat Assessment ; Vote Method</subject><ispartof>Knowledge-Based Intelligent Information and Engineering Systems, 2006, p.769-776</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11893004_98$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11893004_98$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19970220$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gabrys, Bogdan</contributor><contributor>Jain, Lakhmi C.</contributor><contributor>Howlett, Robert J.</contributor><creatorcontrib>Kang, Sukhoon</creatorcontrib><title>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</title><title>Knowledge-Based Intelligent Information and Engineering Systems</title><description>Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data Fusion</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Fusion Approach</subject><subject>Fusion Method</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Reliability theory. Replacement problems</subject><subject>Software</subject><subject>Threat Assessment</subject><subject>Vote Method</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540465379</isbn><isbn>3540465375</isbn><isbn>3540465359</isbn><isbn>9783540465355</isbn><isbn>3540465391</isbn><isbn>9783540465393</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhs2XRCmd-ANeGBgCd7ET22MpFCoVgURhjZzGbg1pUsWuUPvrMSpI3HLSPe89w0vIBcI1AogbRKkYAC-UPCBnLOPA84wpPCQ9zBETxrg6IgMl5B8T6pj0gEGaKMHZKRl4_wFxGMocoEfc7KtNXpbaGzqpTBOcdXMdXNvQYb1oOxeWK3obaUXjabzZ7bb01QSqm4q-t8E1C2rbjk6aYOraLaKAPm3q4BJvGh_BnQ46vvkoPCcnVtfeDH53n7yN72ejx2T6_DAZDafJOkUVEtSaSRQWJOPG2kraskKRgVKCaZtbmclSIWqWKy4gB1OhybnJSpspg5lkfXK59661n-vadrqZO1-sO7fS3bbAKII0hZi72ud8RM3CdEXZtp--QCh-ui7-dc2-Aci8a5w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kang, Sukhoon</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</title><author>Kang, Sukhoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-1aa3817f0834effd8fbd17509973af6f858b911a36947060ed1e64e5bf59e1583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data Fusion</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Fusion Approach</topic><topic>Fusion Method</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Reliability theory. Replacement problems</topic><topic>Software</topic><topic>Threat Assessment</topic><topic>Vote Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Sukhoon</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Sukhoon</au><au>Gabrys, Bogdan</au><au>Jain, Lakhmi C.</au><au>Howlett, Robert J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</atitle><btitle>Knowledge-Based Intelligent Information and Engineering Systems</btitle><date>2006</date><risdate>2006</risdate><spage>769</spage><epage>776</epage><pages>769-776</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540465379</isbn><isbn>3540465375</isbn><isbn>3540465359</isbn><isbn>9783540465355</isbn><eisbn>3540465391</eisbn><eisbn>9783540465393</eisbn><abstract>Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11893004_98</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Knowledge-Based Intelligent Information and Engineering Systems, 2006, p.769-776 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19970220 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Data Fusion Decision theory. Utility theory Exact sciences and technology Fusion Approach Fusion Method Information systems. Data bases Memory organisation. Data processing Operational research and scientific management Operational research. Management science Reliability theory. Replacement problems Software Threat Assessment Vote Method |
title | Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Two-Phase%20Identification%20Algorithm%20Based%20on%20Fuzzy%20Set%20and%20Voting%20for%20Intelligent%20Multi-sensor%20Data%20Fusion&rft.btitle=Knowledge-Based%20Intelligent%20Information%20and%20Engineering%20Systems&rft.au=Kang,%20Sukhoon&rft.date=2006&rft.spage=769&rft.epage=776&rft.pages=769-776&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540465379&rft.isbn_list=3540465375&rft.isbn_list=3540465359&rft.isbn_list=9783540465355&rft_id=info:doi/10.1007/11893004_98&rft_dat=%3Cpascalfrancis_sprin%3E19970220%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540465391&rft.eisbn_list=9783540465393&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |