Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion

Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kang, Sukhoon
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 776
container_issue
container_start_page 769
container_title
container_volume
creator Kang, Sukhoon
description Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.
doi_str_mv 10.1007/11893004_98
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19970220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19970220</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-1aa3817f0834effd8fbd17509973af6f858b911a36947060ed1e64e5bf59e1583</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhs2XRCmd-ANeGBgCd7ET22MpFCoVgURhjZzGbg1pUsWuUPvrMSpI3HLSPe89w0vIBcI1AogbRKkYAC-UPCBnLOPA84wpPCQ9zBETxrg6IgMl5B8T6pj0gEGaKMHZKRl4_wFxGMocoEfc7KtNXpbaGzqpTBOcdXMdXNvQYb1oOxeWK3obaUXjabzZ7bb01QSqm4q-t8E1C2rbjk6aYOraLaKAPm3q4BJvGh_BnQ46vvkoPCcnVtfeDH53n7yN72ejx2T6_DAZDafJOkUVEtSaSRQWJOPG2kraskKRgVKCaZtbmclSIWqWKy4gB1OhybnJSpspg5lkfXK59661n-vadrqZO1-sO7fS3bbAKII0hZi72ud8RM3CdEXZtp--QCh-ui7-dc2-Aci8a5w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</title><source>Springer Books</source><creator>Kang, Sukhoon</creator><contributor>Gabrys, Bogdan ; Jain, Lakhmi C. ; Howlett, Robert J.</contributor><creatorcontrib>Kang, Sukhoon ; Gabrys, Bogdan ; Jain, Lakhmi C. ; Howlett, Robert J.</creatorcontrib><description>Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540465379</identifier><identifier>ISBN: 3540465375</identifier><identifier>ISBN: 3540465359</identifier><identifier>ISBN: 9783540465355</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540465391</identifier><identifier>EISBN: 9783540465393</identifier><identifier>DOI: 10.1007/11893004_98</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data Fusion ; Decision theory. Utility theory ; Exact sciences and technology ; Fusion Approach ; Fusion Method ; Information systems. Data bases ; Memory organisation. Data processing ; Operational research and scientific management ; Operational research. Management science ; Reliability theory. Replacement problems ; Software ; Threat Assessment ; Vote Method</subject><ispartof>Knowledge-Based Intelligent Information and Engineering Systems, 2006, p.769-776</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11893004_98$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11893004_98$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19970220$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gabrys, Bogdan</contributor><contributor>Jain, Lakhmi C.</contributor><contributor>Howlett, Robert J.</contributor><creatorcontrib>Kang, Sukhoon</creatorcontrib><title>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</title><title>Knowledge-Based Intelligent Information and Engineering Systems</title><description>Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data Fusion</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Fusion Approach</subject><subject>Fusion Method</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Reliability theory. Replacement problems</subject><subject>Software</subject><subject>Threat Assessment</subject><subject>Vote Method</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540465379</isbn><isbn>3540465375</isbn><isbn>3540465359</isbn><isbn>9783540465355</isbn><isbn>3540465391</isbn><isbn>9783540465393</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhs2XRCmd-ANeGBgCd7ET22MpFCoVgURhjZzGbg1pUsWuUPvrMSpI3HLSPe89w0vIBcI1AogbRKkYAC-UPCBnLOPA84wpPCQ9zBETxrg6IgMl5B8T6pj0gEGaKMHZKRl4_wFxGMocoEfc7KtNXpbaGzqpTBOcdXMdXNvQYb1oOxeWK3obaUXjabzZ7bb01QSqm4q-t8E1C2rbjk6aYOraLaKAPm3q4BJvGh_BnQ46vvkoPCcnVtfeDH53n7yN72ejx2T6_DAZDafJOkUVEtSaSRQWJOPG2kraskKRgVKCaZtbmclSIWqWKy4gB1OhybnJSpspg5lkfXK59661n-vadrqZO1-sO7fS3bbAKII0hZi72ud8RM3CdEXZtp--QCh-ui7-dc2-Aci8a5w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kang, Sukhoon</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</title><author>Kang, Sukhoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-1aa3817f0834effd8fbd17509973af6f858b911a36947060ed1e64e5bf59e1583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data Fusion</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Fusion Approach</topic><topic>Fusion Method</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Reliability theory. Replacement problems</topic><topic>Software</topic><topic>Threat Assessment</topic><topic>Vote Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Sukhoon</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Sukhoon</au><au>Gabrys, Bogdan</au><au>Jain, Lakhmi C.</au><au>Howlett, Robert J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion</atitle><btitle>Knowledge-Based Intelligent Information and Engineering Systems</btitle><date>2006</date><risdate>2006</risdate><spage>769</spage><epage>776</epage><pages>769-776</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540465379</isbn><isbn>3540465375</isbn><isbn>3540465359</isbn><isbn>9783540465355</isbn><eisbn>3540465391</eisbn><eisbn>9783540465393</eisbn><abstract>Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11893004_98</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Knowledge-Based Intelligent Information and Engineering Systems, 2006, p.769-776
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19970220
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Data Fusion
Decision theory. Utility theory
Exact sciences and technology
Fusion Approach
Fusion Method
Information systems. Data bases
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
Reliability theory. Replacement problems
Software
Threat Assessment
Vote Method
title Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Two-Phase%20Identification%20Algorithm%20Based%20on%20Fuzzy%20Set%20and%20Voting%20for%20Intelligent%20Multi-sensor%20Data%20Fusion&rft.btitle=Knowledge-Based%20Intelligent%20Information%20and%20Engineering%20Systems&rft.au=Kang,%20Sukhoon&rft.date=2006&rft.spage=769&rft.epage=776&rft.pages=769-776&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540465379&rft.isbn_list=3540465375&rft.isbn_list=3540465359&rft.isbn_list=9783540465355&rft_id=info:doi/10.1007/11893004_98&rft_dat=%3Cpascalfrancis_sprin%3E19970220%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540465391&rft.eisbn_list=9783540465393&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true