Minimizing Makespan on Identical Parallel Machines Using Neural Networks

This paper deals with the problem of minimizing the maximum completion time (makespan) of jobs on identical parallel machines. A Hopfield type dynamical neural network is proposed for solving the problem which is known to be NP-hard even for the case of two machines. A penalty function approach is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akyol, Derya Eren, Bayhan, G. Mirac
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue
container_start_page 553
container_title
container_volume
creator Akyol, Derya Eren
Bayhan, G. Mirac
description This paper deals with the problem of minimizing the maximum completion time (makespan) of jobs on identical parallel machines. A Hopfield type dynamical neural network is proposed for solving the problem which is known to be NP-hard even for the case of two machines. A penalty function approach is employed to construct the energy function of the network and time evolving penalty coefficients are proposed to be used during simulation experiments to overcome the tradeoff problem. The results of proposed approach tested on a scheduling problem across 3 different datasets for 5 different initial conditions show that the proposed network converges to feasible solutions for all initialization schemes and outperforms the LPT (longest processing time) rule.
doi_str_mv 10.1007/11893295_61
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-1c48f6d28cb808446ffc134a0f109828e0dd156b331dd761c757ad4af72db4b33</originalsourceid><addsrcrecordid>eNpVkLtOAzEQRc1LIgqp-IFtKCgWPGuvHyWKgERKgILUltePYLLxrtZBCL4eR6GAaa4052g0ughdAr4BjPktgJCkkrVicIQmkgtSU0wZFTU5RiNgACUhVJ78Y5SdohEmuColp-QcTVJ6x3kISKB0hGbLEMM2fIe4LpZ641KvY9HFYm5d3AWj2-JFD7ptXZuxeQvRpWKV9vaT-8ggx-6zGzbpAp153SY3-c0xWj3cv05n5eL5cT69W5SmYrArwVDhma2EaQQWlDLvDRCqsQcsRSUcthZq1hAC1nIGhtdcW6o9r2xD83qMrg53e53ye37Q0YSk-iFs9fClQEomhRTZuz54KaO4doNqum6TFGC1b1P9aZP8AMjqYME</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Minimizing Makespan on Identical Parallel Machines Using Neural Networks</title><source>Springer Books</source><creator>Akyol, Derya Eren ; Bayhan, G. Mirac</creator><contributor>Wang, Jun ; King, Irwin ; Chan, Lai-Wan ; Wang, DeLiang</contributor><creatorcontrib>Akyol, Derya Eren ; Bayhan, G. Mirac ; Wang, Jun ; King, Irwin ; Chan, Lai-Wan ; Wang, DeLiang</creatorcontrib><description>This paper deals with the problem of minimizing the maximum completion time (makespan) of jobs on identical parallel machines. A Hopfield type dynamical neural network is proposed for solving the problem which is known to be NP-hard even for the case of two machines. A penalty function approach is employed to construct the energy function of the network and time evolving penalty coefficients are proposed to be used during simulation experiments to overcome the tradeoff problem. The results of proposed approach tested on a scheduling problem across 3 different datasets for 5 different initial conditions show that the proposed network converges to feasible solutions for all initialization schemes and outperforms the LPT (longest processing time) rule.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540464846</identifier><identifier>ISBN: 3540464840</identifier><identifier>ISBN: 3540464794</identifier><identifier>ISBN: 9783540464792</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540464853</identifier><identifier>EISBN: 3540464859</identifier><identifier>DOI: 10.1007/11893295_61</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Energy Function ; Exact sciences and technology ; Initialization Scheme ; Penalty Parameter ; Schedule Problem ; Software ; Travelling Salesman Problem</subject><ispartof>Lecture notes in computer science, 2006, p.553-562</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-1c48f6d28cb808446ffc134a0f109828e0dd156b331dd761c757ad4af72db4b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11893295_61$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11893295_61$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19969898$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Wang, Jun</contributor><contributor>King, Irwin</contributor><contributor>Chan, Lai-Wan</contributor><contributor>Wang, DeLiang</contributor><creatorcontrib>Akyol, Derya Eren</creatorcontrib><creatorcontrib>Bayhan, G. Mirac</creatorcontrib><title>Minimizing Makespan on Identical Parallel Machines Using Neural Networks</title><title>Lecture notes in computer science</title><description>This paper deals with the problem of minimizing the maximum completion time (makespan) of jobs on identical parallel machines. A Hopfield type dynamical neural network is proposed for solving the problem which is known to be NP-hard even for the case of two machines. A penalty function approach is employed to construct the energy function of the network and time evolving penalty coefficients are proposed to be used during simulation experiments to overcome the tradeoff problem. The results of proposed approach tested on a scheduling problem across 3 different datasets for 5 different initial conditions show that the proposed network converges to feasible solutions for all initialization schemes and outperforms the LPT (longest processing time) rule.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Energy Function</subject><subject>Exact sciences and technology</subject><subject>Initialization Scheme</subject><subject>Penalty Parameter</subject><subject>Schedule Problem</subject><subject>Software</subject><subject>Travelling Salesman Problem</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540464846</isbn><isbn>3540464840</isbn><isbn>3540464794</isbn><isbn>9783540464792</isbn><isbn>9783540464853</isbn><isbn>3540464859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkLtOAzEQRc1LIgqp-IFtKCgWPGuvHyWKgERKgILUltePYLLxrtZBCL4eR6GAaa4052g0ughdAr4BjPktgJCkkrVicIQmkgtSU0wZFTU5RiNgACUhVJ78Y5SdohEmuColp-QcTVJ6x3kISKB0hGbLEMM2fIe4LpZ641KvY9HFYm5d3AWj2-JFD7ptXZuxeQvRpWKV9vaT-8ggx-6zGzbpAp153SY3-c0xWj3cv05n5eL5cT69W5SmYrArwVDhma2EaQQWlDLvDRCqsQcsRSUcthZq1hAC1nIGhtdcW6o9r2xD83qMrg53e53ye37Q0YSk-iFs9fClQEomhRTZuz54KaO4doNqum6TFGC1b1P9aZP8AMjqYME</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Akyol, Derya Eren</creator><creator>Bayhan, G. Mirac</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Minimizing Makespan on Identical Parallel Machines Using Neural Networks</title><author>Akyol, Derya Eren ; Bayhan, G. Mirac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-1c48f6d28cb808446ffc134a0f109828e0dd156b331dd761c757ad4af72db4b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Energy Function</topic><topic>Exact sciences and technology</topic><topic>Initialization Scheme</topic><topic>Penalty Parameter</topic><topic>Schedule Problem</topic><topic>Software</topic><topic>Travelling Salesman Problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akyol, Derya Eren</creatorcontrib><creatorcontrib>Bayhan, G. Mirac</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akyol, Derya Eren</au><au>Bayhan, G. Mirac</au><au>Wang, Jun</au><au>King, Irwin</au><au>Chan, Lai-Wan</au><au>Wang, DeLiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimizing Makespan on Identical Parallel Machines Using Neural Networks</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>553</spage><epage>562</epage><pages>553-562</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540464846</isbn><isbn>3540464840</isbn><isbn>3540464794</isbn><isbn>9783540464792</isbn><eisbn>9783540464853</eisbn><eisbn>3540464859</eisbn><abstract>This paper deals with the problem of minimizing the maximum completion time (makespan) of jobs on identical parallel machines. A Hopfield type dynamical neural network is proposed for solving the problem which is known to be NP-hard even for the case of two machines. A penalty function approach is employed to construct the energy function of the network and time evolving penalty coefficients are proposed to be used during simulation experiments to overcome the tradeoff problem. The results of proposed approach tested on a scheduling problem across 3 different datasets for 5 different initial conditions show that the proposed network converges to feasible solutions for all initialization schemes and outperforms the LPT (longest processing time) rule.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11893295_61</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.553-562
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19969898
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Energy Function
Exact sciences and technology
Initialization Scheme
Penalty Parameter
Schedule Problem
Software
Travelling Salesman Problem
title Minimizing Makespan on Identical Parallel Machines Using Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimizing%20Makespan%20on%20Identical%20Parallel%20Machines%20Using%20Neural%20Networks&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Akyol,%20Derya%20Eren&rft.date=2006&rft.spage=553&rft.epage=562&rft.pages=553-562&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540464846&rft.isbn_list=3540464840&rft.isbn_list=3540464794&rft.isbn_list=9783540464792&rft_id=info:doi/10.1007/11893295_61&rft_dat=%3Cpascalfrancis_sprin%3E19969898%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540464853&rft.eisbn_list=3540464859&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true