A Hybrid Blind Signal Separation Algorithm: Particle Swarm Optimization on Feed-Forward Neural Network

The blind signal separation problem (BSS) which involved linear mixing model and stationary source signals is focused in this paper. In the past, the neural network (NN) model is the popular architecture for separation, but its performance depends on initiation of weight strongly. In order to improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Chan-Cheng, Sun, Tsung-Ying, Hsieh, Sheng-Ta, Lin, Chun-Ling, Lee, Kan-Yuan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1087
container_issue
container_start_page 1078
container_title
container_volume
creator Liu, Chan-Cheng
Sun, Tsung-Ying
Hsieh, Sheng-Ta
Lin, Chun-Ling
Lee, Kan-Yuan
description The blind signal separation problem (BSS) which involved linear mixing model and stationary source signals is focused in this paper. In the past, the neural network (NN) model is the popular architecture for separation, but its performance depends on initiation of weight strongly. In order to improve this problem to enhance global convergent, the genetic algorithm (GA) has been introduced for optimizing the weights of NN system recently. This paper, a novel evolution algorithm, particle swarm optimization (PSO) is introduced to optimize NN weights by us. Further, in simulation experiments of BSS, it is demonstrated that the PSO-based NN system has better performance in terms of global searching, computational time, accuracy and efficiency than the GA-based NN system.
doi_str_mv 10.1007/11893028_120
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969702</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-9080f0407396e61458919496e1d2c9e2d918f5dcedc4f2cc4a44e92b159efe7b3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhtcvsK29-QP24kWIzn4km_FWi7VCaYXqOWx2N3VtmoRNpNRfb6QehIEZeJ55Dy8h1wzuGIC6ZyxFATzNGIcTMkaViliCTGQK6SkZsISxSAiJZ2T4BxTKczKA_ilCJcUlGbbtJwBwhXxAigmdH_LgLX0sfWXp2m8qXdK1a3TQna8rOik3dfDdx-6BvurQeVM6ut7rsKOrpvM7_33U-pk5Z6NZHXpo6dJ9hT5o6bp9HbZX5KLQZevGf3tE3mdPb9N5tFg9v0wni6jhHLoIIYUCJCiBiUuYjFNkKPubWW7QcYssLWJrnDWy4MZILaVDnrMYXeFULkbk5pjb6Nbosgi6Mr7NmuB3OhwyhpigAt57t0ev7VG1cSHL63rbZgyy35qz_zWLH9q6alM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Hybrid Blind Signal Separation Algorithm: Particle Swarm Optimization on Feed-Forward Neural Network</title><source>Springer Books</source><creator>Liu, Chan-Cheng ; Sun, Tsung-Ying ; Hsieh, Sheng-Ta ; Lin, Chun-Ling ; Lee, Kan-Yuan</creator><contributor>Wang, Jun ; King, Irwin ; Chan, Lai-Wan ; Wang, DeLiang</contributor><creatorcontrib>Liu, Chan-Cheng ; Sun, Tsung-Ying ; Hsieh, Sheng-Ta ; Lin, Chun-Ling ; Lee, Kan-Yuan ; Wang, Jun ; King, Irwin ; Chan, Lai-Wan ; Wang, DeLiang</creatorcontrib><description>The blind signal separation problem (BSS) which involved linear mixing model and stationary source signals is focused in this paper. In the past, the neural network (NN) model is the popular architecture for separation, but its performance depends on initiation of weight strongly. In order to improve this problem to enhance global convergent, the genetic algorithm (GA) has been introduced for optimizing the weights of NN system recently. This paper, a novel evolution algorithm, particle swarm optimization (PSO) is introduced to optimize NN weights by us. Further, in simulation experiments of BSS, it is demonstrated that the PSO-based NN system has better performance in terms of global searching, computational time, accuracy and efficiency than the GA-based NN system.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540464794</identifier><identifier>ISBN: 9783540464792</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540464808</identifier><identifier>EISBN: 3540464808</identifier><identifier>DOI: 10.1007/11893028_120</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Genetic Algorithm ; Independent Component Analysis ; Particle Swarm Optimization ; Radial Basis Function Neural Network</subject><ispartof>Lecture notes in computer science, 2006, p.1078-1087</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11893028_120$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11893028_120$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19969702$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Wang, Jun</contributor><contributor>King, Irwin</contributor><contributor>Chan, Lai-Wan</contributor><contributor>Wang, DeLiang</contributor><creatorcontrib>Liu, Chan-Cheng</creatorcontrib><creatorcontrib>Sun, Tsung-Ying</creatorcontrib><creatorcontrib>Hsieh, Sheng-Ta</creatorcontrib><creatorcontrib>Lin, Chun-Ling</creatorcontrib><creatorcontrib>Lee, Kan-Yuan</creatorcontrib><title>A Hybrid Blind Signal Separation Algorithm: Particle Swarm Optimization on Feed-Forward Neural Network</title><title>Lecture notes in computer science</title><description>The blind signal separation problem (BSS) which involved linear mixing model and stationary source signals is focused in this paper. In the past, the neural network (NN) model is the popular architecture for separation, but its performance depends on initiation of weight strongly. In order to improve this problem to enhance global convergent, the genetic algorithm (GA) has been introduced for optimizing the weights of NN system recently. This paper, a novel evolution algorithm, particle swarm optimization (PSO) is introduced to optimize NN weights by us. Further, in simulation experiments of BSS, it is demonstrated that the PSO-based NN system has better performance in terms of global searching, computational time, accuracy and efficiency than the GA-based NN system.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Independent Component Analysis</subject><subject>Particle Swarm Optimization</subject><subject>Radial Basis Function Neural Network</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540464794</isbn><isbn>9783540464792</isbn><isbn>9783540464808</isbn><isbn>3540464808</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1Lw0AQhtcvsK29-QP24kWIzn4km_FWi7VCaYXqOWx2N3VtmoRNpNRfb6QehIEZeJ55Dy8h1wzuGIC6ZyxFATzNGIcTMkaViliCTGQK6SkZsISxSAiJZ2T4BxTKczKA_ilCJcUlGbbtJwBwhXxAigmdH_LgLX0sfWXp2m8qXdK1a3TQna8rOik3dfDdx-6BvurQeVM6ut7rsKOrpvM7_33U-pk5Z6NZHXpo6dJ9hT5o6bp9HbZX5KLQZevGf3tE3mdPb9N5tFg9v0wni6jhHLoIIYUCJCiBiUuYjFNkKPubWW7QcYssLWJrnDWy4MZILaVDnrMYXeFULkbk5pjb6Nbosgi6Mr7NmuB3OhwyhpigAt57t0ev7VG1cSHL63rbZgyy35qz_zWLH9q6alM</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liu, Chan-Cheng</creator><creator>Sun, Tsung-Ying</creator><creator>Hsieh, Sheng-Ta</creator><creator>Lin, Chun-Ling</creator><creator>Lee, Kan-Yuan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Hybrid Blind Signal Separation Algorithm: Particle Swarm Optimization on Feed-Forward Neural Network</title><author>Liu, Chan-Cheng ; Sun, Tsung-Ying ; Hsieh, Sheng-Ta ; Lin, Chun-Ling ; Lee, Kan-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-9080f0407396e61458919496e1d2c9e2d918f5dcedc4f2cc4a44e92b159efe7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Independent Component Analysis</topic><topic>Particle Swarm Optimization</topic><topic>Radial Basis Function Neural Network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chan-Cheng</creatorcontrib><creatorcontrib>Sun, Tsung-Ying</creatorcontrib><creatorcontrib>Hsieh, Sheng-Ta</creatorcontrib><creatorcontrib>Lin, Chun-Ling</creatorcontrib><creatorcontrib>Lee, Kan-Yuan</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chan-Cheng</au><au>Sun, Tsung-Ying</au><au>Hsieh, Sheng-Ta</au><au>Lin, Chun-Ling</au><au>Lee, Kan-Yuan</au><au>Wang, Jun</au><au>King, Irwin</au><au>Chan, Lai-Wan</au><au>Wang, DeLiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Hybrid Blind Signal Separation Algorithm: Particle Swarm Optimization on Feed-Forward Neural Network</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>1078</spage><epage>1087</epage><pages>1078-1087</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540464794</isbn><isbn>9783540464792</isbn><eisbn>9783540464808</eisbn><eisbn>3540464808</eisbn><abstract>The blind signal separation problem (BSS) which involved linear mixing model and stationary source signals is focused in this paper. In the past, the neural network (NN) model is the popular architecture for separation, but its performance depends on initiation of weight strongly. In order to improve this problem to enhance global convergent, the genetic algorithm (GA) has been introduced for optimizing the weights of NN system recently. This paper, a novel evolution algorithm, particle swarm optimization (PSO) is introduced to optimize NN weights by us. Further, in simulation experiments of BSS, it is demonstrated that the PSO-based NN system has better performance in terms of global searching, computational time, accuracy and efficiency than the GA-based NN system.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11893028_120</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.1078-1087
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19969702
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Genetic Algorithm
Independent Component Analysis
Particle Swarm Optimization
Radial Basis Function Neural Network
title A Hybrid Blind Signal Separation Algorithm: Particle Swarm Optimization on Feed-Forward Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Hybrid%20Blind%20Signal%20Separation%20Algorithm:%20Particle%20Swarm%20Optimization%20on%20Feed-Forward%20Neural%20Network&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Liu,%20Chan-Cheng&rft.date=2006&rft.spage=1078&rft.epage=1087&rft.pages=1078-1087&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540464794&rft.isbn_list=9783540464792&rft_id=info:doi/10.1007/11893028_120&rft_dat=%3Cpascalfrancis_sprin%3E19969702%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540464808&rft.eisbn_list=3540464808&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true