A New Method for Crude Oil Price Forecasting Based on Support Vector Machines
This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evalu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | |
container_start_page | 444 |
container_title | |
container_volume | |
creator | Xie, Wen Yu, Lean Xu, Shanying Wang, Shouyang |
description | This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction. |
doi_str_mv | 10.1007/11758549_63 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4c9b3e47fd8c5643ca9dc4e4985f742510332be3cd08b33d4d348ad4b945614c3</originalsourceid><addsrcrecordid>eNpVkDtPwzAUhc1Loiqd-ANeGBgCdu61Y4-looBEKRKPNXJspw2UOLJTIf49QWWAs5zhPIaPkFPOLjhjxSXnhVACdSlhj0x0oUAgAwQl1T4Zccl5BoD64F8m-CEZMWB5pguEYzJJ6Y0NAi5Vno_IYkof_Cdd-H4dHK1DpLO4dZ4umw19jI31dB6ityb1TbuiVyZ5R0NLn7ZdF2JPX73th83C2HXT-nRCjmqzSX7y62PyMr9-nt1m98ubu9n0PrMgsc_Q6go8FrVTVkgEa7Sz6FErUReYC84A8sqDdUxVAA4doDIOK41CcrQwJme7384kazZ1NK1tUtnF5sPEr5JrLTUOEMbkfNdLQ9SufCyrEN5TyVn5g7T8gxS-AcuoYTY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</title><source>Springer Books</source><creator>Xie, Wen ; Yu, Lean ; Xu, Shanying ; Wang, Shouyang</creator><contributor>Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</contributor><creatorcontrib>Xie, Wen ; Yu, Lean ; Xu, Shanying ; Wang, Shouyang ; Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</creatorcontrib><description>This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540343851</identifier><identifier>ISBN: 3540343857</identifier><identifier>ISBN: 3540343792</identifier><identifier>ISBN: 9783540343790</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540343868</identifier><identifier>EISBN: 3540343865</identifier><identifier>DOI: 10.1007/11758549_63</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; ARIMA Model ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Memory organisation. Data processing ; Root Mean Square Error ; Software ; Support Vector Machine ; Support Vector Machine Model ; Support Vector Regression</subject><ispartof>Computational Science – ICCS 2006, 2006, p.444-451</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4c9b3e47fd8c5643ca9dc4e4985f742510332be3cd08b33d4d348ad4b945614c3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11758549_63$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11758549_63$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19969478$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alexandrov, Vassil N.</contributor><contributor>Dongarra, Jack</contributor><contributor>van Albada, Geert Dick</contributor><contributor>Sloot, Peter M. A.</contributor><creatorcontrib>Xie, Wen</creatorcontrib><creatorcontrib>Yu, Lean</creatorcontrib><creatorcontrib>Xu, Shanying</creatorcontrib><creatorcontrib>Wang, Shouyang</creatorcontrib><title>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</title><title>Computational Science – ICCS 2006</title><description>This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction.</description><subject>Applied sciences</subject><subject>ARIMA Model</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Memory organisation. Data processing</subject><subject>Root Mean Square Error</subject><subject>Software</subject><subject>Support Vector Machine</subject><subject>Support Vector Machine Model</subject><subject>Support Vector Regression</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><isbn>9783540343868</isbn><isbn>3540343865</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkDtPwzAUhc1Loiqd-ANeGBgCdu61Y4-looBEKRKPNXJspw2UOLJTIf49QWWAs5zhPIaPkFPOLjhjxSXnhVACdSlhj0x0oUAgAwQl1T4Zccl5BoD64F8m-CEZMWB5pguEYzJJ6Y0NAi5Vno_IYkof_Cdd-H4dHK1DpLO4dZ4umw19jI31dB6ityb1TbuiVyZ5R0NLn7ZdF2JPX73th83C2HXT-nRCjmqzSX7y62PyMr9-nt1m98ubu9n0PrMgsc_Q6go8FrVTVkgEa7Sz6FErUReYC84A8sqDdUxVAA4doDIOK41CcrQwJme7384kazZ1NK1tUtnF5sPEr5JrLTUOEMbkfNdLQ9SufCyrEN5TyVn5g7T8gxS-AcuoYTY</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Xie, Wen</creator><creator>Yu, Lean</creator><creator>Xu, Shanying</creator><creator>Wang, Shouyang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</title><author>Xie, Wen ; Yu, Lean ; Xu, Shanying ; Wang, Shouyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4c9b3e47fd8c5643ca9dc4e4985f742510332be3cd08b33d4d348ad4b945614c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>ARIMA Model</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Memory organisation. Data processing</topic><topic>Root Mean Square Error</topic><topic>Software</topic><topic>Support Vector Machine</topic><topic>Support Vector Machine Model</topic><topic>Support Vector Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wen</creatorcontrib><creatorcontrib>Yu, Lean</creatorcontrib><creatorcontrib>Xu, Shanying</creatorcontrib><creatorcontrib>Wang, Shouyang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Wen</au><au>Yu, Lean</au><au>Xu, Shanying</au><au>Wang, Shouyang</au><au>Alexandrov, Vassil N.</au><au>Dongarra, Jack</au><au>van Albada, Geert Dick</au><au>Sloot, Peter M. A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</atitle><btitle>Computational Science – ICCS 2006</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>444</spage><epage>451</epage><pages>444-451</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><eisbn>9783540343868</eisbn><eisbn>3540343865</eisbn><abstract>This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11758549_63</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computational Science – ICCS 2006, 2006, p.444-451 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19969478 |
source | Springer Books |
subjects | Applied sciences ARIMA Model Computer science control theory systems Data processing. List processing. Character string processing Exact sciences and technology Memory organisation. Data processing Root Mean Square Error Software Support Vector Machine Support Vector Machine Model Support Vector Regression |
title | A New Method for Crude Oil Price Forecasting Based on Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20New%20Method%20for%20Crude%20Oil%20Price%20Forecasting%20Based%20on%20Support%20Vector%20Machines&rft.btitle=Computational%20Science%20%E2%80%93%20ICCS%202006&rft.au=Xie,%20Wen&rft.date=2006&rft.spage=444&rft.epage=451&rft.pages=444-451&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540343851&rft.isbn_list=3540343857&rft.isbn_list=3540343792&rft.isbn_list=9783540343790&rft_id=info:doi/10.1007/11758549_63&rft_dat=%3Cpascalfrancis_sprin%3E19969478%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540343868&rft.eisbn_list=3540343865&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |