A New Method for Crude Oil Price Forecasting Based on Support Vector Machines

This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xie, Wen, Yu, Lean, Xu, Shanying, Wang, Shouyang
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue
container_start_page 444
container_title
container_volume
creator Xie, Wen
Yu, Lean
Xu, Shanying
Wang, Shouyang
description This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction.
doi_str_mv 10.1007/11758549_63
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4c9b3e47fd8c5643ca9dc4e4985f742510332be3cd08b33d4d348ad4b945614c3</originalsourceid><addsrcrecordid>eNpVkDtPwzAUhc1Loiqd-ANeGBgCdu61Y4-looBEKRKPNXJspw2UOLJTIf49QWWAs5zhPIaPkFPOLjhjxSXnhVACdSlhj0x0oUAgAwQl1T4Zccl5BoD64F8m-CEZMWB5pguEYzJJ6Y0NAi5Vno_IYkof_Cdd-H4dHK1DpLO4dZ4umw19jI31dB6ityb1TbuiVyZ5R0NLn7ZdF2JPX73th83C2HXT-nRCjmqzSX7y62PyMr9-nt1m98ubu9n0PrMgsc_Q6go8FrVTVkgEa7Sz6FErUReYC84A8sqDdUxVAA4doDIOK41CcrQwJme7384kazZ1NK1tUtnF5sPEr5JrLTUOEMbkfNdLQ9SufCyrEN5TyVn5g7T8gxS-AcuoYTY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</title><source>Springer Books</source><creator>Xie, Wen ; Yu, Lean ; Xu, Shanying ; Wang, Shouyang</creator><contributor>Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</contributor><creatorcontrib>Xie, Wen ; Yu, Lean ; Xu, Shanying ; Wang, Shouyang ; Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</creatorcontrib><description>This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training &amp; learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540343851</identifier><identifier>ISBN: 3540343857</identifier><identifier>ISBN: 3540343792</identifier><identifier>ISBN: 9783540343790</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540343868</identifier><identifier>EISBN: 3540343865</identifier><identifier>DOI: 10.1007/11758549_63</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; ARIMA Model ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Memory organisation. Data processing ; Root Mean Square Error ; Software ; Support Vector Machine ; Support Vector Machine Model ; Support Vector Regression</subject><ispartof>Computational Science – ICCS 2006, 2006, p.444-451</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4c9b3e47fd8c5643ca9dc4e4985f742510332be3cd08b33d4d348ad4b945614c3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11758549_63$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11758549_63$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19969478$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alexandrov, Vassil N.</contributor><contributor>Dongarra, Jack</contributor><contributor>van Albada, Geert Dick</contributor><contributor>Sloot, Peter M. A.</contributor><creatorcontrib>Xie, Wen</creatorcontrib><creatorcontrib>Yu, Lean</creatorcontrib><creatorcontrib>Xu, Shanying</creatorcontrib><creatorcontrib>Wang, Shouyang</creatorcontrib><title>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</title><title>Computational Science – ICCS 2006</title><description>This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training &amp; learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction.</description><subject>Applied sciences</subject><subject>ARIMA Model</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Memory organisation. Data processing</subject><subject>Root Mean Square Error</subject><subject>Software</subject><subject>Support Vector Machine</subject><subject>Support Vector Machine Model</subject><subject>Support Vector Regression</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><isbn>9783540343868</isbn><isbn>3540343865</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkDtPwzAUhc1Loiqd-ANeGBgCdu61Y4-looBEKRKPNXJspw2UOLJTIf49QWWAs5zhPIaPkFPOLjhjxSXnhVACdSlhj0x0oUAgAwQl1T4Zccl5BoD64F8m-CEZMWB5pguEYzJJ6Y0NAi5Vno_IYkof_Cdd-H4dHK1DpLO4dZ4umw19jI31dB6ityb1TbuiVyZ5R0NLn7ZdF2JPX73th83C2HXT-nRCjmqzSX7y62PyMr9-nt1m98ubu9n0PrMgsc_Q6go8FrVTVkgEa7Sz6FErUReYC84A8sqDdUxVAA4doDIOK41CcrQwJme7384kazZ1NK1tUtnF5sPEr5JrLTUOEMbkfNdLQ9SufCyrEN5TyVn5g7T8gxS-AcuoYTY</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Xie, Wen</creator><creator>Yu, Lean</creator><creator>Xu, Shanying</creator><creator>Wang, Shouyang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</title><author>Xie, Wen ; Yu, Lean ; Xu, Shanying ; Wang, Shouyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4c9b3e47fd8c5643ca9dc4e4985f742510332be3cd08b33d4d348ad4b945614c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>ARIMA Model</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Memory organisation. Data processing</topic><topic>Root Mean Square Error</topic><topic>Software</topic><topic>Support Vector Machine</topic><topic>Support Vector Machine Model</topic><topic>Support Vector Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wen</creatorcontrib><creatorcontrib>Yu, Lean</creatorcontrib><creatorcontrib>Xu, Shanying</creatorcontrib><creatorcontrib>Wang, Shouyang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Wen</au><au>Yu, Lean</au><au>Xu, Shanying</au><au>Wang, Shouyang</au><au>Alexandrov, Vassil N.</au><au>Dongarra, Jack</au><au>van Albada, Geert Dick</au><au>Sloot, Peter M. A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A New Method for Crude Oil Price Forecasting Based on Support Vector Machines</atitle><btitle>Computational Science – ICCS 2006</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>444</spage><epage>451</epage><pages>444-451</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><eisbn>9783540343868</eisbn><eisbn>3540343865</eisbn><abstract>This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training &amp; learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The experiment results show that SVM outperforms the other two methods and is a fairly good candidate for the crude oil price prediction.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11758549_63</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science – ICCS 2006, 2006, p.444-451
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19969478
source Springer Books
subjects Applied sciences
ARIMA Model
Computer science
control theory
systems
Data processing. List processing. Character string processing
Exact sciences and technology
Memory organisation. Data processing
Root Mean Square Error
Software
Support Vector Machine
Support Vector Machine Model
Support Vector Regression
title A New Method for Crude Oil Price Forecasting Based on Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20New%20Method%20for%20Crude%20Oil%20Price%20Forecasting%20Based%20on%20Support%20Vector%20Machines&rft.btitle=Computational%20Science%20%E2%80%93%20ICCS%202006&rft.au=Xie,%20Wen&rft.date=2006&rft.spage=444&rft.epage=451&rft.pages=444-451&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540343851&rft.isbn_list=3540343857&rft.isbn_list=3540343792&rft.isbn_list=9783540343790&rft_id=info:doi/10.1007/11758549_63&rft_dat=%3Cpascalfrancis_sprin%3E19969478%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540343868&rft.eisbn_list=3540343865&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true