A Multiphysics Model of Capillary Growth and Remodeling

We report on an enhanced computational framework for simulating flow-tissue interactions that significantly expands the capabilities of our previous model [1]. We adhere to the basic structural concept of the so-called intussusceptive growth and remodeling which does not only generate capillaries an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Szczerba, Dominik, Székely, Gábor, Kurz, Haymo
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue
container_start_page 86
container_title
container_volume
creator Szczerba, Dominik
Székely, Gábor
Kurz, Haymo
description We report on an enhanced computational framework for simulating flow-tissue interactions that significantly expands the capabilities of our previous model [1]. We adhere to the basic structural concept of the so-called intussusceptive growth and remodeling which does not only generate capillaries and terminal vessels but also rebuilds them into a highly perfused system [2]. Present enhancements comprise calculation and visualization in three dimensions, refined tissue and fluid mechanics, and the transport of molecules that act as biochemical growth or signaling factors. Our present model explains formation of capillary meshes and bifurcations, and the emergence of feeding and draining microvessels in an interdigitating pattern that avoids arterio-venous shunts. In addition, it predicts detailed hydrodynamic properties and transport characteristics for oxygen, metabolites or signaling molecules. In comparison to the previous work, the complexity of our approach is dramatically increased by using a multiphysics modeling environment, where many independent computational components are combined and the data structure is unified.
doi_str_mv 10.1007/11758525_12
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-162558413bbb68a5d6b3081fd74069c7562404863030084211911a4be8ff03193</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhccX2Nau_AOzceEieu_ceS5L0Sq0CKLrYfJqo2kSMhXpvzelCq7O4jscDh9j1wh3CGDuEY2ySiiP4oSNSUkgSVaIUzZCjZgQSXfGps7YP4Z0zkZAIBJnJF2ycYwfACCMEyNmZnz1Ve-qbrOPVRb5qs2Lmrcln4euquvQ7_mib793Gx6anL8W2wOvmvUVuyhDHYvpb07Y--PD2_wpWb4snuezZdIJpXcJaqGUlUhpmmobVK5TAotlbiRolxmlhQRpNQ3_wEqB6BCDTAtblkDoaMJujrtdiFmoyz40WRV911fb4ZtH57RDYYfe7bEXB9Ssi96nbfsZPYI_aPP_tNEPophW3g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Multiphysics Model of Capillary Growth and Remodeling</title><source>Springer Books</source><creator>Szczerba, Dominik ; Székely, Gábor ; Kurz, Haymo</creator><contributor>Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</contributor><creatorcontrib>Szczerba, Dominik ; Székely, Gábor ; Kurz, Haymo ; Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</creatorcontrib><description>We report on an enhanced computational framework for simulating flow-tissue interactions that significantly expands the capabilities of our previous model [1]. We adhere to the basic structural concept of the so-called intussusceptive growth and remodeling which does not only generate capillaries and terminal vessels but also rebuilds them into a highly perfused system [2]. Present enhancements comprise calculation and visualization in three dimensions, refined tissue and fluid mechanics, and the transport of molecules that act as biochemical growth or signaling factors. Our present model explains formation of capillary meshes and bifurcations, and the emergence of feeding and draining microvessels in an interdigitating pattern that avoids arterio-venous shunts. In addition, it predicts detailed hydrodynamic properties and transport characteristics for oxygen, metabolites or signaling molecules. In comparison to the previous work, the complexity of our approach is dramatically increased by using a multiphysics modeling environment, where many independent computational components are combined and the data structure is unified.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540343813</identifier><identifier>ISBN: 3540343814</identifier><identifier>ISBN: 3540343792</identifier><identifier>ISBN: 9783540343790</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540343822</identifier><identifier>EISBN: 9783540343820</identifier><identifier>DOI: 10.1007/11758525_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Capillary Growth ; Capillary Plexus ; Computer science; control theory; systems ; Exact sciences and technology ; Medical Image Computing ; Multiphysics Model ; Theoretical computing ; Venous Branch</subject><ispartof>Computational Science – ICCS 2006, 2006, p.86-93</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11758525_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11758525_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19969128$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alexandrov, Vassil N.</contributor><contributor>Dongarra, Jack</contributor><contributor>van Albada, Geert Dick</contributor><contributor>Sloot, Peter M. A.</contributor><creatorcontrib>Szczerba, Dominik</creatorcontrib><creatorcontrib>Székely, Gábor</creatorcontrib><creatorcontrib>Kurz, Haymo</creatorcontrib><title>A Multiphysics Model of Capillary Growth and Remodeling</title><title>Computational Science – ICCS 2006</title><description>We report on an enhanced computational framework for simulating flow-tissue interactions that significantly expands the capabilities of our previous model [1]. We adhere to the basic structural concept of the so-called intussusceptive growth and remodeling which does not only generate capillaries and terminal vessels but also rebuilds them into a highly perfused system [2]. Present enhancements comprise calculation and visualization in three dimensions, refined tissue and fluid mechanics, and the transport of molecules that act as biochemical growth or signaling factors. Our present model explains formation of capillary meshes and bifurcations, and the emergence of feeding and draining microvessels in an interdigitating pattern that avoids arterio-venous shunts. In addition, it predicts detailed hydrodynamic properties and transport characteristics for oxygen, metabolites or signaling molecules. In comparison to the previous work, the complexity of our approach is dramatically increased by using a multiphysics modeling environment, where many independent computational components are combined and the data structure is unified.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Capillary Growth</subject><subject>Capillary Plexus</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Medical Image Computing</subject><subject>Multiphysics Model</subject><subject>Theoretical computing</subject><subject>Venous Branch</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540343813</isbn><isbn>3540343814</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><isbn>3540343822</isbn><isbn>9783540343820</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkEtLw0AUhccX2Nau_AOzceEieu_ceS5L0Sq0CKLrYfJqo2kSMhXpvzelCq7O4jscDh9j1wh3CGDuEY2ySiiP4oSNSUkgSVaIUzZCjZgQSXfGps7YP4Z0zkZAIBJnJF2ycYwfACCMEyNmZnz1Ve-qbrOPVRb5qs2Lmrcln4euquvQ7_mib793Gx6anL8W2wOvmvUVuyhDHYvpb07Y--PD2_wpWb4snuezZdIJpXcJaqGUlUhpmmobVK5TAotlbiRolxmlhQRpNQ3_wEqB6BCDTAtblkDoaMJujrtdiFmoyz40WRV911fb4ZtH57RDYYfe7bEXB9Ssi96nbfsZPYI_aPP_tNEPophW3g</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Szczerba, Dominik</creator><creator>Székely, Gábor</creator><creator>Kurz, Haymo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Multiphysics Model of Capillary Growth and Remodeling</title><author>Szczerba, Dominik ; Székely, Gábor ; Kurz, Haymo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-162558413bbb68a5d6b3081fd74069c7562404863030084211911a4be8ff03193</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Capillary Growth</topic><topic>Capillary Plexus</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Medical Image Computing</topic><topic>Multiphysics Model</topic><topic>Theoretical computing</topic><topic>Venous Branch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szczerba, Dominik</creatorcontrib><creatorcontrib>Székely, Gábor</creatorcontrib><creatorcontrib>Kurz, Haymo</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szczerba, Dominik</au><au>Székely, Gábor</au><au>Kurz, Haymo</au><au>Alexandrov, Vassil N.</au><au>Dongarra, Jack</au><au>van Albada, Geert Dick</au><au>Sloot, Peter M. A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Multiphysics Model of Capillary Growth and Remodeling</atitle><btitle>Computational Science – ICCS 2006</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540343813</isbn><isbn>3540343814</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><eisbn>3540343822</eisbn><eisbn>9783540343820</eisbn><abstract>We report on an enhanced computational framework for simulating flow-tissue interactions that significantly expands the capabilities of our previous model [1]. We adhere to the basic structural concept of the so-called intussusceptive growth and remodeling which does not only generate capillaries and terminal vessels but also rebuilds them into a highly perfused system [2]. Present enhancements comprise calculation and visualization in three dimensions, refined tissue and fluid mechanics, and the transport of molecules that act as biochemical growth or signaling factors. Our present model explains formation of capillary meshes and bifurcations, and the emergence of feeding and draining microvessels in an interdigitating pattern that avoids arterio-venous shunts. In addition, it predicts detailed hydrodynamic properties and transport characteristics for oxygen, metabolites or signaling molecules. In comparison to the previous work, the complexity of our approach is dramatically increased by using a multiphysics modeling environment, where many independent computational components are combined and the data structure is unified.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11758525_12</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science – ICCS 2006, 2006, p.86-93
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19969128
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Capillary Growth
Capillary Plexus
Computer science
control theory
systems
Exact sciences and technology
Medical Image Computing
Multiphysics Model
Theoretical computing
Venous Branch
title A Multiphysics Model of Capillary Growth and Remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Multiphysics%20Model%20of%20Capillary%20Growth%20and%20Remodeling&rft.btitle=Computational%20Science%20%E2%80%93%20ICCS%202006&rft.au=Szczerba,%20Dominik&rft.date=2006&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540343813&rft.isbn_list=3540343814&rft.isbn_list=3540343792&rft.isbn_list=9783540343790&rft_id=info:doi/10.1007/11758525_12&rft_dat=%3Cpascalfrancis_sprin%3E19969128%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540343822&rft.eisbn_list=9783540343820&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true