Algorithm for K Disjoint Maximum Subarrays

The maximum subarray problem is to find the array portion that maximizes the sum of array elements in it. For K disjoint maximum subarrays, Ruzzo and Tompa gave an O(n) time solution for one-dimension. This solution is, however, difficult to extend to two-dimensions. While a trivial solution of O(Kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bae, Sung Eun, Takaoka, Tadao
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue
container_start_page 595
container_title
container_volume
creator Bae, Sung Eun
Takaoka, Tadao
description The maximum subarray problem is to find the array portion that maximizes the sum of array elements in it. For K disjoint maximum subarrays, Ruzzo and Tompa gave an O(n) time solution for one-dimension. This solution is, however, difficult to extend to two-dimensions. While a trivial solution of O(Kn3) time is easily obtainable for two-dimensions, little study has been undertaken to better this. We first propose an O(n+Klog K) time solution for one-dimension. This is equivalent to Ruzzo and Tompa’s when order is considered. Based on this, we achieve O(n3+Kn2log n) time for two-dimensions. This is cubic time when K≤ n/log n.
doi_str_mv 10.1007/11758501_80
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969020</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-67372204458fd540b208f3ed903859b7420e70e54e6ed0b035b62a9a3e413ecf3</originalsourceid><addsrcrecordid>eNpNkLtOw0AURJeXRAip-AE3FCAZ7t27zzIKTxFEAdSrtb0ODnEc7SYS-XuMkoJpppij0WgYu0C4QQB9i6ilkYDOwAEbWW1ICiBBBtQhG6BCzImEPWJn-0BbfswGQMBzqwWdslFKc-hFqAzaAbseL2ZdbNZfbVZ3MXvJ7po075rlOnv1P027abP3TeFj9Nt0zk5qv0hhtPch-3y4_5g85dO3x-fJeJqvuFTrXGnSnIMQ0tRVv6LgYGoKlQUy0hZacAgaghRBhQoKIFko7q2nIJBCWdOQXe56Vz6VflFHvyyb5FaxaX3cOrRWWeDQc1c7LvXRchaiK7ruOzkE93eW-3cW_QK9tlP_</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Algorithm for K Disjoint Maximum Subarrays</title><source>Springer Books</source><creator>Bae, Sung Eun ; Takaoka, Tadao</creator><contributor>Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</contributor><creatorcontrib>Bae, Sung Eun ; Takaoka, Tadao ; Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</creatorcontrib><description>The maximum subarray problem is to find the array portion that maximizes the sum of array elements in it. For K disjoint maximum subarrays, Ruzzo and Tompa gave an O(n) time solution for one-dimension. This solution is, however, difficult to extend to two-dimensions. While a trivial solution of O(Kn3) time is easily obtainable for two-dimensions, little study has been undertaken to better this. We first propose an O(n+Klog K) time solution for one-dimension. This is equivalent to Ruzzo and Tompa’s when order is considered. Based on this, we achieve O(n3+Kn2log n) time for two-dimensions. This is cubic time when K≤ n/log n.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540343792</identifier><identifier>ISBN: 9783540343790</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540343806</identifier><identifier>EISBN: 3540343806</identifier><identifier>DOI: 10.1007/11758501_80</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Array Element ; Computer science; control theory; systems ; Exact sciences and technology ; Input Array ; Small Physical Size ; Theoretical computing ; Time Solution ; Trivial Solution</subject><ispartof>Computational Science – ICCS 2006, 2006, p.595-602</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11758501_80$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11758501_80$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19969020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alexandrov, Vassil N.</contributor><contributor>Dongarra, Jack</contributor><contributor>van Albada, Geert Dick</contributor><contributor>Sloot, Peter M. A.</contributor><creatorcontrib>Bae, Sung Eun</creatorcontrib><creatorcontrib>Takaoka, Tadao</creatorcontrib><title>Algorithm for K Disjoint Maximum Subarrays</title><title>Computational Science – ICCS 2006</title><description>The maximum subarray problem is to find the array portion that maximizes the sum of array elements in it. For K disjoint maximum subarrays, Ruzzo and Tompa gave an O(n) time solution for one-dimension. This solution is, however, difficult to extend to two-dimensions. While a trivial solution of O(Kn3) time is easily obtainable for two-dimensions, little study has been undertaken to better this. We first propose an O(n+Klog K) time solution for one-dimension. This is equivalent to Ruzzo and Tompa’s when order is considered. Based on this, we achieve O(n3+Kn2log n) time for two-dimensions. This is cubic time when K≤ n/log n.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Array Element</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Input Array</subject><subject>Small Physical Size</subject><subject>Theoretical computing</subject><subject>Time Solution</subject><subject>Trivial Solution</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540343792</isbn><isbn>9783540343790</isbn><isbn>9783540343806</isbn><isbn>3540343806</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkLtOw0AURJeXRAip-AE3FCAZ7t27zzIKTxFEAdSrtb0ODnEc7SYS-XuMkoJpppij0WgYu0C4QQB9i6ilkYDOwAEbWW1ICiBBBtQhG6BCzImEPWJn-0BbfswGQMBzqwWdslFKc-hFqAzaAbseL2ZdbNZfbVZ3MXvJ7po075rlOnv1P027abP3TeFj9Nt0zk5qv0hhtPch-3y4_5g85dO3x-fJeJqvuFTrXGnSnIMQ0tRVv6LgYGoKlQUy0hZacAgaghRBhQoKIFko7q2nIJBCWdOQXe56Vz6VflFHvyyb5FaxaX3cOrRWWeDQc1c7LvXRchaiK7ruOzkE93eW-3cW_QK9tlP_</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Bae, Sung Eun</creator><creator>Takaoka, Tadao</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Algorithm for K Disjoint Maximum Subarrays</title><author>Bae, Sung Eun ; Takaoka, Tadao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-67372204458fd540b208f3ed903859b7420e70e54e6ed0b035b62a9a3e413ecf3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Array Element</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Input Array</topic><topic>Small Physical Size</topic><topic>Theoretical computing</topic><topic>Time Solution</topic><topic>Trivial Solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Sung Eun</creatorcontrib><creatorcontrib>Takaoka, Tadao</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Sung Eun</au><au>Takaoka, Tadao</au><au>Alexandrov, Vassil N.</au><au>Dongarra, Jack</au><au>van Albada, Geert Dick</au><au>Sloot, Peter M. A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Algorithm for K Disjoint Maximum Subarrays</atitle><btitle>Computational Science – ICCS 2006</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>595</spage><epage>602</epage><pages>595-602</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540343792</isbn><isbn>9783540343790</isbn><eisbn>9783540343806</eisbn><eisbn>3540343806</eisbn><abstract>The maximum subarray problem is to find the array portion that maximizes the sum of array elements in it. For K disjoint maximum subarrays, Ruzzo and Tompa gave an O(n) time solution for one-dimension. This solution is, however, difficult to extend to two-dimensions. While a trivial solution of O(Kn3) time is easily obtainable for two-dimensions, little study has been undertaken to better this. We first propose an O(n+Klog K) time solution for one-dimension. This is equivalent to Ruzzo and Tompa’s when order is considered. Based on this, we achieve O(n3+Kn2log n) time for two-dimensions. This is cubic time when K≤ n/log n.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11758501_80</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science – ICCS 2006, 2006, p.595-602
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19969020
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Array Element
Computer science
control theory
systems
Exact sciences and technology
Input Array
Small Physical Size
Theoretical computing
Time Solution
Trivial Solution
title Algorithm for K Disjoint Maximum Subarrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Algorithm%20for%20K%20Disjoint%20Maximum%20Subarrays&rft.btitle=Computational%20Science%20%E2%80%93%20ICCS%202006&rft.au=Bae,%20Sung%20Eun&rft.date=2006&rft.spage=595&rft.epage=602&rft.pages=595-602&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540343792&rft.isbn_list=9783540343790&rft_id=info:doi/10.1007/11758501_80&rft_dat=%3Cpascalfrancis_sprin%3E19969020%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540343806&rft.eisbn_list=3540343806&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true