Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning

Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Son, Seung-Hyun, Kim, Jae-Yearn
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue
container_start_page 590
container_title
container_volume
creator Son, Seung-Hyun
Kim, Jae-Yearn
description Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy.
doi_str_mv 10.1007/11751595_63
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19968528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19968528</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-f67c358d6b59607fae6be1fe628ce6a43e3e8ae4a878287cc269b99126f6a15e3</originalsourceid><addsrcrecordid>eNpNkDtPAzEQhM1LIoRU_IFrKCgOvPb5VUIIEBEJhEht7Tl2dDx8J_so8u-5KEFii93imxmthpALoNdAqboBUAKEEVbyA3LGRUV5RZU0h2QEEqDkvDJHZGKU_mMCjsmIcspKoyp-SiY5f9BhOEjN9Yg832OPxZtf_bi-aWMR2lTMY-4xOl_eYfarYuExxSaui2Xe7lnsU9tt9vAVU99snQM6JycBv7Kf7O-YLB9m79OncvHyOJ_eLsqOgenLIJXjQq9kLYykKqCXtYfgJdPOS6y4516jr1ArzbRyjklTGwNMBokgPB-Ty11uh9nhV0jDs022XWq-MW0sGCO1YHrQXe10eUBx7ZOt2_YzW6B226b91yb_BS-kYVk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</title><source>Springer Books</source><creator>Son, Seung-Hyun ; Kim, Jae-Yearn</creator><contributor>Choo, Hyunseung ; Gervasi, Osvaldo ; Taniar, David ; Gavrilova, Marina ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</contributor><creatorcontrib>Son, Seung-Hyun ; Kim, Jae-Yearn ; Choo, Hyunseung ; Gervasi, Osvaldo ; Taniar, David ; Gavrilova, Marina ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</creatorcontrib><description>Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540340751</identifier><identifier>ISBN: 3540340750</identifier><identifier>ISBN: 354034070X</identifier><identifier>ISBN: 9783540340706</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540340769</identifier><identifier>EISBN: 9783540340768</identifier><identifier>DOI: 10.1007/11751595_63</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Data Reduction ; Data Reduction Method ; Euclidean Distance Measure ; Exact sciences and technology ; Irrelevant Attribute ; Representative Instance ; Theoretical computing</subject><ispartof>Computational Science and Its Applications - ICCSA 2006, 2006, p.590-599</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11751595_63$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11751595_63$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19968528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Choo, Hyunseung</contributor><contributor>Gervasi, Osvaldo</contributor><contributor>Taniar, David</contributor><contributor>Gavrilova, Marina</contributor><contributor>Laganá, Antonio</contributor><contributor>Kumar, Vipin</contributor><contributor>Tan, C. J. Kenneth</contributor><contributor>Mun, Youngsong</contributor><creatorcontrib>Son, Seung-Hyun</creatorcontrib><creatorcontrib>Kim, Jae-Yearn</creatorcontrib><title>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</title><title>Computational Science and Its Applications - ICCSA 2006</title><description>Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Data Reduction</subject><subject>Data Reduction Method</subject><subject>Euclidean Distance Measure</subject><subject>Exact sciences and technology</subject><subject>Irrelevant Attribute</subject><subject>Representative Instance</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540340751</isbn><isbn>3540340750</isbn><isbn>354034070X</isbn><isbn>9783540340706</isbn><isbn>3540340769</isbn><isbn>9783540340768</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPAzEQhM1LIoRU_IFrKCgOvPb5VUIIEBEJhEht7Tl2dDx8J_so8u-5KEFii93imxmthpALoNdAqboBUAKEEVbyA3LGRUV5RZU0h2QEEqDkvDJHZGKU_mMCjsmIcspKoyp-SiY5f9BhOEjN9Yg832OPxZtf_bi-aWMR2lTMY-4xOl_eYfarYuExxSaui2Xe7lnsU9tt9vAVU99snQM6JycBv7Kf7O-YLB9m79OncvHyOJ_eLsqOgenLIJXjQq9kLYykKqCXtYfgJdPOS6y4516jr1ArzbRyjklTGwNMBokgPB-Ty11uh9nhV0jDs022XWq-MW0sGCO1YHrQXe10eUBx7ZOt2_YzW6B226b91yb_BS-kYVk</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Son, Seung-Hyun</creator><creator>Kim, Jae-Yearn</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</title><author>Son, Seung-Hyun ; Kim, Jae-Yearn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-f67c358d6b59607fae6be1fe628ce6a43e3e8ae4a878287cc269b99126f6a15e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Data Reduction</topic><topic>Data Reduction Method</topic><topic>Euclidean Distance Measure</topic><topic>Exact sciences and technology</topic><topic>Irrelevant Attribute</topic><topic>Representative Instance</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Seung-Hyun</creatorcontrib><creatorcontrib>Kim, Jae-Yearn</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Seung-Hyun</au><au>Kim, Jae-Yearn</au><au>Choo, Hyunseung</au><au>Gervasi, Osvaldo</au><au>Taniar, David</au><au>Gavrilova, Marina</au><au>Laganá, Antonio</au><au>Kumar, Vipin</au><au>Tan, C. J. Kenneth</au><au>Mun, Youngsong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</atitle><btitle>Computational Science and Its Applications - ICCSA 2006</btitle><date>2006</date><risdate>2006</risdate><spage>590</spage><epage>599</epage><pages>590-599</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540340751</isbn><isbn>3540340750</isbn><isbn>354034070X</isbn><isbn>9783540340706</isbn><eisbn>3540340769</eisbn><eisbn>9783540340768</eisbn><abstract>Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11751595_63</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science and Its Applications - ICCSA 2006, 2006, p.590-599
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19968528
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Data Reduction
Data Reduction Method
Euclidean Distance Measure
Exact sciences and technology
Irrelevant Attribute
Representative Instance
Theoretical computing
title Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Reduction%20for%20Instance-Based%20Learning%20Using%20Entropy-Based%20Partitioning&rft.btitle=Computational%20Science%20and%20Its%20Applications%20-%20ICCSA%202006&rft.au=Son,%20Seung-Hyun&rft.date=2006&rft.spage=590&rft.epage=599&rft.pages=590-599&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540340751&rft.isbn_list=3540340750&rft.isbn_list=354034070X&rft.isbn_list=9783540340706&rft_id=info:doi/10.1007/11751595_63&rft_dat=%3Cpascalfrancis_sprin%3E19968528%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540340769&rft.eisbn_list=9783540340768&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true