Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning
Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we pr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | |
container_start_page | 590 |
container_title | |
container_volume | |
creator | Son, Seung-Hyun Kim, Jae-Yearn |
description | Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy. |
doi_str_mv | 10.1007/11751595_63 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19968528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19968528</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-f67c358d6b59607fae6be1fe628ce6a43e3e8ae4a878287cc269b99126f6a15e3</originalsourceid><addsrcrecordid>eNpNkDtPAzEQhM1LIoRU_IFrKCgOvPb5VUIIEBEJhEht7Tl2dDx8J_so8u-5KEFii93imxmthpALoNdAqboBUAKEEVbyA3LGRUV5RZU0h2QEEqDkvDJHZGKU_mMCjsmIcspKoyp-SiY5f9BhOEjN9Yg832OPxZtf_bi-aWMR2lTMY-4xOl_eYfarYuExxSaui2Xe7lnsU9tt9vAVU99snQM6JycBv7Kf7O-YLB9m79OncvHyOJ_eLsqOgenLIJXjQq9kLYykKqCXtYfgJdPOS6y4516jr1ArzbRyjklTGwNMBokgPB-Ty11uh9nhV0jDs022XWq-MW0sGCO1YHrQXe10eUBx7ZOt2_YzW6B226b91yb_BS-kYVk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</title><source>Springer Books</source><creator>Son, Seung-Hyun ; Kim, Jae-Yearn</creator><contributor>Choo, Hyunseung ; Gervasi, Osvaldo ; Taniar, David ; Gavrilova, Marina ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</contributor><creatorcontrib>Son, Seung-Hyun ; Kim, Jae-Yearn ; Choo, Hyunseung ; Gervasi, Osvaldo ; Taniar, David ; Gavrilova, Marina ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</creatorcontrib><description>Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540340751</identifier><identifier>ISBN: 3540340750</identifier><identifier>ISBN: 354034070X</identifier><identifier>ISBN: 9783540340706</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540340769</identifier><identifier>EISBN: 9783540340768</identifier><identifier>DOI: 10.1007/11751595_63</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Data Reduction ; Data Reduction Method ; Euclidean Distance Measure ; Exact sciences and technology ; Irrelevant Attribute ; Representative Instance ; Theoretical computing</subject><ispartof>Computational Science and Its Applications - ICCSA 2006, 2006, p.590-599</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11751595_63$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11751595_63$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19968528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Choo, Hyunseung</contributor><contributor>Gervasi, Osvaldo</contributor><contributor>Taniar, David</contributor><contributor>Gavrilova, Marina</contributor><contributor>Laganá, Antonio</contributor><contributor>Kumar, Vipin</contributor><contributor>Tan, C. J. Kenneth</contributor><contributor>Mun, Youngsong</contributor><creatorcontrib>Son, Seung-Hyun</creatorcontrib><creatorcontrib>Kim, Jae-Yearn</creatorcontrib><title>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</title><title>Computational Science and Its Applications - ICCSA 2006</title><description>Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Data Reduction</subject><subject>Data Reduction Method</subject><subject>Euclidean Distance Measure</subject><subject>Exact sciences and technology</subject><subject>Irrelevant Attribute</subject><subject>Representative Instance</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540340751</isbn><isbn>3540340750</isbn><isbn>354034070X</isbn><isbn>9783540340706</isbn><isbn>3540340769</isbn><isbn>9783540340768</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPAzEQhM1LIoRU_IFrKCgOvPb5VUIIEBEJhEht7Tl2dDx8J_so8u-5KEFii93imxmthpALoNdAqboBUAKEEVbyA3LGRUV5RZU0h2QEEqDkvDJHZGKU_mMCjsmIcspKoyp-SiY5f9BhOEjN9Yg832OPxZtf_bi-aWMR2lTMY-4xOl_eYfarYuExxSaui2Xe7lnsU9tt9vAVU99snQM6JycBv7Kf7O-YLB9m79OncvHyOJ_eLsqOgenLIJXjQq9kLYykKqCXtYfgJdPOS6y4516jr1ArzbRyjklTGwNMBokgPB-Ty11uh9nhV0jDs022XWq-MW0sGCO1YHrQXe10eUBx7ZOt2_YzW6B226b91yb_BS-kYVk</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Son, Seung-Hyun</creator><creator>Kim, Jae-Yearn</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</title><author>Son, Seung-Hyun ; Kim, Jae-Yearn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-f67c358d6b59607fae6be1fe628ce6a43e3e8ae4a878287cc269b99126f6a15e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Data Reduction</topic><topic>Data Reduction Method</topic><topic>Euclidean Distance Measure</topic><topic>Exact sciences and technology</topic><topic>Irrelevant Attribute</topic><topic>Representative Instance</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Seung-Hyun</creatorcontrib><creatorcontrib>Kim, Jae-Yearn</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Seung-Hyun</au><au>Kim, Jae-Yearn</au><au>Choo, Hyunseung</au><au>Gervasi, Osvaldo</au><au>Taniar, David</au><au>Gavrilova, Marina</au><au>Laganá, Antonio</au><au>Kumar, Vipin</au><au>Tan, C. J. Kenneth</au><au>Mun, Youngsong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning</atitle><btitle>Computational Science and Its Applications - ICCSA 2006</btitle><date>2006</date><risdate>2006</risdate><spage>590</spage><epage>599</epage><pages>590-599</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540340751</isbn><isbn>3540340750</isbn><isbn>354034070X</isbn><isbn>9783540340706</isbn><eisbn>3540340769</eisbn><eisbn>9783540340768</eisbn><abstract>Instance-based learning methods such as the nearest neighbor classifier have proven to perform well in pattern classification in several fields. Despite their high classification accuracy, they suffer from a high storage requirement, computational cost, and sensitivity to noise. In this paper, we present a data reduction method for instance-based learning, based on entropy-based partitioning and representative instances. Experimental results show that the new algorithm achieves a high data reduction rate as well as classification accuracy.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11751595_63</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computational Science and Its Applications - ICCSA 2006, 2006, p.590-599 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19968528 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Data Reduction Data Reduction Method Euclidean Distance Measure Exact sciences and technology Irrelevant Attribute Representative Instance Theoretical computing |
title | Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Reduction%20for%20Instance-Based%20Learning%20Using%20Entropy-Based%20Partitioning&rft.btitle=Computational%20Science%20and%20Its%20Applications%20-%20ICCSA%202006&rft.au=Son,%20Seung-Hyun&rft.date=2006&rft.spage=590&rft.epage=599&rft.pages=590-599&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540340751&rft.isbn_list=3540340750&rft.isbn_list=354034070X&rft.isbn_list=9783540340706&rft_id=info:doi/10.1007/11751595_63&rft_dat=%3Cpascalfrancis_sprin%3E19968528%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540340769&rft.eisbn_list=9783540340768&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |