A Modeling and Similarity Measure Function for Multiple Trajectories in Moving Databases

In this paper, we focus on a new spatio-temporal representation scheme which can efficiently model multiple trajectories based on several moving objects in video databases. The traditional methods only consider direction property, time interval property, and spatial relations property for modeling m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shim, Choon-Bo, Kim, John
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue
container_start_page 114
container_title
container_volume
creator Shim, Choon-Bo
Kim, John
description In this paper, we focus on a new spatio-temporal representation scheme which can efficiently model multiple trajectories based on several moving objects in video databases. The traditional methods only consider direction property, time interval property, and spatial relations property for modeling moving objects’ trajectories. But, our method also takes into account on distance property, conceptual location information, and related object information (e.g. player name having a soccer ball). In addition, we propose a similarity measure function that improves a retrieval accuracy to measure a similarity among multiple trajectories. The proposed scheme supports content-based retrieval using moving objects’ trajectories and supports semantics-based retrieval using concepts which are acquired through the location information of moving objects. Finally, from the experimental results using real trajectories extracted from soccer video data with soccer ball and player, the performance of our scheme achieves about 15-20% performance improvement against existing schemes when the weights of angle and topological relation are over two times than that of distance.
doi_str_mv 10.1007/11751588_13
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19968348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19968348</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-dd38a3831679c4e0df2939af6f5a776ba8a3c6c2dcdb6192ec216f803ca09cbc3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhs2XRCmd-ANeGBgCvtjxx1gVCkitGCgSW3RxnMolTSI7Req_J1VB4pYbnleP7l5CboDdA2PqAUBlkGmdAz8hE6M0zwTjgikhTskIJEDCuTBn5OoPpPKcjBhnaWKU4JdkEuOGDcNBaq5G5HNKl23pat-sKTYlffdbX2Pw_Z4uHcZdcHS-a2zv24ZWbaDLXd37rnZ0FXDjbN8G7yL1zWD5PjgesccCo4vX5KLCOrrJ7x6Tj_nTavaSLN6eX2fTRdKlYPqkLLlGrodzlLHCsbJKDTdYySpDpWSBA7XSpqUtCwkmdTYFWWnGLTJjC8vH5Pbo7TBarKuAjfUx74LfYtjnYMzwqNBD7u6YiwNq1i7kRdt-xRxYfqg2_1ct_wFBzWad</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Modeling and Similarity Measure Function for Multiple Trajectories in Moving Databases</title><source>Springer Books</source><creator>Shim, Choon-Bo ; Kim, John</creator><contributor>Choo, Hyunseung ; Gavrilova, Marina L. ; Gervasi, Osvaldo ; Taniar, David ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</contributor><creatorcontrib>Shim, Choon-Bo ; Kim, John ; Choo, Hyunseung ; Gavrilova, Marina L. ; Gervasi, Osvaldo ; Taniar, David ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</creatorcontrib><description>In this paper, we focus on a new spatio-temporal representation scheme which can efficiently model multiple trajectories based on several moving objects in video databases. The traditional methods only consider direction property, time interval property, and spatial relations property for modeling moving objects’ trajectories. But, our method also takes into account on distance property, conceptual location information, and related object information (e.g. player name having a soccer ball). In addition, we propose a similarity measure function that improves a retrieval accuracy to measure a similarity among multiple trajectories. The proposed scheme supports content-based retrieval using moving objects’ trajectories and supports semantics-based retrieval using concepts which are acquired through the location information of moving objects. Finally, from the experimental results using real trajectories extracted from soccer video data with soccer ball and player, the performance of our scheme achieves about 15-20% performance improvement against existing schemes when the weights of angle and topological relation are over two times than that of distance.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540340726</identifier><identifier>ISBN: 9783540340720</identifier><identifier>ISBN: 354034070X</identifier><identifier>ISBN: 9783540340706</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540340744</identifier><identifier>EISBN: 3540340742</identifier><identifier>DOI: 10.1007/11751588_13</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Pattern recognition. Digital image processing. Computational geometry ; Software ; Theoretical computing</subject><ispartof>Computational Science and Its Applications - ICCSA 2006, 2006, p.114-124</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11751588_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11751588_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19968348$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Choo, Hyunseung</contributor><contributor>Gavrilova, Marina L.</contributor><contributor>Gervasi, Osvaldo</contributor><contributor>Taniar, David</contributor><contributor>Laganá, Antonio</contributor><contributor>Kumar, Vipin</contributor><contributor>Tan, C. J. Kenneth</contributor><contributor>Mun, Youngsong</contributor><creatorcontrib>Shim, Choon-Bo</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><title>A Modeling and Similarity Measure Function for Multiple Trajectories in Moving Databases</title><title>Computational Science and Its Applications - ICCSA 2006</title><description>In this paper, we focus on a new spatio-temporal representation scheme which can efficiently model multiple trajectories based on several moving objects in video databases. The traditional methods only consider direction property, time interval property, and spatial relations property for modeling moving objects’ trajectories. But, our method also takes into account on distance property, conceptual location information, and related object information (e.g. player name having a soccer ball). In addition, we propose a similarity measure function that improves a retrieval accuracy to measure a similarity among multiple trajectories. The proposed scheme supports content-based retrieval using moving objects’ trajectories and supports semantics-based retrieval using concepts which are acquired through the location information of moving objects. Finally, from the experimental results using real trajectories extracted from soccer video data with soccer ball and player, the performance of our scheme achieves about 15-20% performance improvement against existing schemes when the weights of angle and topological relation are over two times than that of distance.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540340726</isbn><isbn>9783540340720</isbn><isbn>354034070X</isbn><isbn>9783540340706</isbn><isbn>9783540340744</isbn><isbn>3540340742</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhs2XRCmd-ANeGBgCvtjxx1gVCkitGCgSW3RxnMolTSI7Req_J1VB4pYbnleP7l5CboDdA2PqAUBlkGmdAz8hE6M0zwTjgikhTskIJEDCuTBn5OoPpPKcjBhnaWKU4JdkEuOGDcNBaq5G5HNKl23pat-sKTYlffdbX2Pw_Z4uHcZdcHS-a2zv24ZWbaDLXd37rnZ0FXDjbN8G7yL1zWD5PjgesccCo4vX5KLCOrrJ7x6Tj_nTavaSLN6eX2fTRdKlYPqkLLlGrodzlLHCsbJKDTdYySpDpWSBA7XSpqUtCwkmdTYFWWnGLTJjC8vH5Pbo7TBarKuAjfUx74LfYtjnYMzwqNBD7u6YiwNq1i7kRdt-xRxYfqg2_1ct_wFBzWad</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Shim, Choon-Bo</creator><creator>Kim, John</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Modeling and Similarity Measure Function for Multiple Trajectories in Moving Databases</title><author>Shim, Choon-Bo ; Kim, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-dd38a3831679c4e0df2939af6f5a776ba8a3c6c2dcdb6192ec216f803ca09cbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shim, Choon-Bo</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shim, Choon-Bo</au><au>Kim, John</au><au>Choo, Hyunseung</au><au>Gavrilova, Marina L.</au><au>Gervasi, Osvaldo</au><au>Taniar, David</au><au>Laganá, Antonio</au><au>Kumar, Vipin</au><au>Tan, C. J. Kenneth</au><au>Mun, Youngsong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Modeling and Similarity Measure Function for Multiple Trajectories in Moving Databases</atitle><btitle>Computational Science and Its Applications - ICCSA 2006</btitle><date>2006</date><risdate>2006</risdate><spage>114</spage><epage>124</epage><pages>114-124</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540340726</isbn><isbn>9783540340720</isbn><isbn>354034070X</isbn><isbn>9783540340706</isbn><eisbn>9783540340744</eisbn><eisbn>3540340742</eisbn><abstract>In this paper, we focus on a new spatio-temporal representation scheme which can efficiently model multiple trajectories based on several moving objects in video databases. The traditional methods only consider direction property, time interval property, and spatial relations property for modeling moving objects’ trajectories. But, our method also takes into account on distance property, conceptual location information, and related object information (e.g. player name having a soccer ball). In addition, we propose a similarity measure function that improves a retrieval accuracy to measure a similarity among multiple trajectories. The proposed scheme supports content-based retrieval using moving objects’ trajectories and supports semantics-based retrieval using concepts which are acquired through the location information of moving objects. Finally, from the experimental results using real trajectories extracted from soccer video data with soccer ball and player, the performance of our scheme achieves about 15-20% performance improvement against existing schemes when the weights of angle and topological relation are over two times than that of distance.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11751588_13</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science and Its Applications - ICCSA 2006, 2006, p.114-124
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19968348
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Software
Theoretical computing
title A Modeling and Similarity Measure Function for Multiple Trajectories in Moving Databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Modeling%20and%20Similarity%20Measure%20Function%20for%20Multiple%20Trajectories%20in%20Moving%20Databases&rft.btitle=Computational%20Science%20and%20Its%20Applications%20-%20ICCSA%202006&rft.au=Shim,%20Choon-Bo&rft.date=2006&rft.spage=114&rft.epage=124&rft.pages=114-124&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540340726&rft.isbn_list=9783540340720&rft.isbn_list=354034070X&rft.isbn_list=9783540340706&rft_id=info:doi/10.1007/11751588_13&rft_dat=%3Cpascalfrancis_sprin%3E19968348%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540340744&rft.eisbn_list=3540340742&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true