A β-Shape from the Voronoi Diagram of Atoms for Protein Structure Analysis

In this paper, we present a β-shape and a β-complex for a set of atoms with arbitrary sizes for a faster response to the topological queries among atoms. These concepts are the generalizations of the well-known α-shape and α-complex (and their weighted counterparts as well). To compute a β-shape, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seo, Jeongyeon, Kim, Donguk, Cho, Cheol-Hyung, Kim, Deok-Soo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 101
container_title
container_volume
creator Seo, Jeongyeon
Kim, Donguk
Cho, Cheol-Hyung
Kim, Deok-Soo
description In this paper, we present a β-shape and a β-complex for a set of atoms with arbitrary sizes for a faster response to the topological queries among atoms. These concepts are the generalizations of the well-known α-shape and α-complex (and their weighted counterparts as well). To compute a β-shape, we first compute the Voronoi diagram of atoms and then transform the Voronoi diagram to a quasi-triangulation which is the topological dual of the Voronoi diagram. Then, we compute a β-complex from the quasi-triangulation by analyzing the valid intervals for each simplex in the quasi-triangulation. It is shown that a β-complex can be computed in O(m) time in the worst case from the Voronoi diagram of atoms, where m is the number of simplices in the quasi-triangulation. Then, a β-shape for a particular β consisting of k simplices can be located in O(log m + k) time in the worst case from the simplicies in the β-complex sorted according to the interval values.
doi_str_mv 10.1007/11751540_12
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19968219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19968219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-11e6141aeddcbff966d84423d3aea20d296dee81798fa0405b8eb8eb928eeeee3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhM2fRCg98QK-cOAQ8NquYx-j8isqgVRA3KJtYreBJq7s9NDX4kF4JlIVCUYrzUozmsNHyBmwS2AsuwLIRjCSrAC-R05E_wnJMtD7JAEFkAohzcFfwN4PScIE46nJpDgmwxg_WC8BSguVkMecfn-l0wWuLHXBN7RbWPrmg299Ta9rnAdsqHc073wTqfOBPgff2bql0y6sy24dLM1bXG5iHU_JkcNltMNfH5DX25uX8X06ebp7GOeTtOQKuhTAKpCAtqrKmXNGqUpLyUUl0CJnFTeqslZDZrRDJtlopu32DNd2KzEg57vdFcYSly5gW9axWIW6wbApwBilOZi-d7HrxT5q5zYUM-8_YwE9vB5l8Q-l-AHIamGa</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A β-Shape from the Voronoi Diagram of Atoms for Protein Structure Analysis</title><source>Springer Books</source><creator>Seo, Jeongyeon ; Kim, Donguk ; Cho, Cheol-Hyung ; Kim, Deok-Soo</creator><contributor>Choo, Hyunseung ; Gervasi, Osvaldo ; Taniar, David ; Gavrilova, Marina ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</contributor><creatorcontrib>Seo, Jeongyeon ; Kim, Donguk ; Cho, Cheol-Hyung ; Kim, Deok-Soo ; Choo, Hyunseung ; Gervasi, Osvaldo ; Taniar, David ; Gavrilova, Marina ; Laganá, Antonio ; Kumar, Vipin ; Tan, C. J. Kenneth ; Mun, Youngsong</creatorcontrib><description>In this paper, we present a β-shape and a β-complex for a set of atoms with arbitrary sizes for a faster response to the topological queries among atoms. These concepts are the generalizations of the well-known α-shape and α-complex (and their weighted counterparts as well). To compute a β-shape, we first compute the Voronoi diagram of atoms and then transform the Voronoi diagram to a quasi-triangulation which is the topological dual of the Voronoi diagram. Then, we compute a β-complex from the quasi-triangulation by analyzing the valid intervals for each simplex in the quasi-triangulation. It is shown that a β-complex can be computed in O(m) time in the worst case from the Voronoi diagram of atoms, where m is the number of simplices in the quasi-triangulation. Then, a β-shape for a particular β consisting of k simplices can be located in O(log m + k) time in the worst case from the simplicies in the β-complex sorted according to the interval values.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354034070X</identifier><identifier>ISBN: 9783540340706</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540340718</identifier><identifier>EISBN: 9783540340713</identifier><identifier>DOI: 10.1007/11751540_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; complex ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; shape ; Software ; Theoretical computing ; Voronoi diagram of spheres</subject><ispartof>Computational Science and Its Applications - ICCSA 2006, 2006, p.101-110</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-11e6141aeddcbff966d84423d3aea20d296dee81798fa0405b8eb8eb928eeeee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11751540_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11751540_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19968219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Choo, Hyunseung</contributor><contributor>Gervasi, Osvaldo</contributor><contributor>Taniar, David</contributor><contributor>Gavrilova, Marina</contributor><contributor>Laganá, Antonio</contributor><contributor>Kumar, Vipin</contributor><contributor>Tan, C. J. Kenneth</contributor><contributor>Mun, Youngsong</contributor><creatorcontrib>Seo, Jeongyeon</creatorcontrib><creatorcontrib>Kim, Donguk</creatorcontrib><creatorcontrib>Cho, Cheol-Hyung</creatorcontrib><creatorcontrib>Kim, Deok-Soo</creatorcontrib><title>A β-Shape from the Voronoi Diagram of Atoms for Protein Structure Analysis</title><title>Computational Science and Its Applications - ICCSA 2006</title><description>In this paper, we present a β-shape and a β-complex for a set of atoms with arbitrary sizes for a faster response to the topological queries among atoms. These concepts are the generalizations of the well-known α-shape and α-complex (and their weighted counterparts as well). To compute a β-shape, we first compute the Voronoi diagram of atoms and then transform the Voronoi diagram to a quasi-triangulation which is the topological dual of the Voronoi diagram. Then, we compute a β-complex from the quasi-triangulation by analyzing the valid intervals for each simplex in the quasi-triangulation. It is shown that a β-complex can be computed in O(m) time in the worst case from the Voronoi diagram of atoms, where m is the number of simplices in the quasi-triangulation. Then, a β-shape for a particular β consisting of k simplices can be located in O(log m + k) time in the worst case from the simplicies in the β-complex sorted according to the interval values.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>complex</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>shape</subject><subject>Software</subject><subject>Theoretical computing</subject><subject>Voronoi diagram of spheres</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354034070X</isbn><isbn>9783540340706</isbn><isbn>3540340718</isbn><isbn>9783540340713</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkM1OwzAQhM2fRCg98QK-cOAQ8NquYx-j8isqgVRA3KJtYreBJq7s9NDX4kF4JlIVCUYrzUozmsNHyBmwS2AsuwLIRjCSrAC-R05E_wnJMtD7JAEFkAohzcFfwN4PScIE46nJpDgmwxg_WC8BSguVkMecfn-l0wWuLHXBN7RbWPrmg299Ta9rnAdsqHc073wTqfOBPgff2bql0y6sy24dLM1bXG5iHU_JkcNltMNfH5DX25uX8X06ebp7GOeTtOQKuhTAKpCAtqrKmXNGqUpLyUUl0CJnFTeqslZDZrRDJtlopu32DNd2KzEg57vdFcYSly5gW9axWIW6wbApwBilOZi-d7HrxT5q5zYUM-8_YwE9vB5l8Q-l-AHIamGa</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Seo, Jeongyeon</creator><creator>Kim, Donguk</creator><creator>Cho, Cheol-Hyung</creator><creator>Kim, Deok-Soo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A β-Shape from the Voronoi Diagram of Atoms for Protein Structure Analysis</title><author>Seo, Jeongyeon ; Kim, Donguk ; Cho, Cheol-Hyung ; Kim, Deok-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-11e6141aeddcbff966d84423d3aea20d296dee81798fa0405b8eb8eb928eeeee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>complex</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>shape</topic><topic>Software</topic><topic>Theoretical computing</topic><topic>Voronoi diagram of spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Jeongyeon</creatorcontrib><creatorcontrib>Kim, Donguk</creatorcontrib><creatorcontrib>Cho, Cheol-Hyung</creatorcontrib><creatorcontrib>Kim, Deok-Soo</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Jeongyeon</au><au>Kim, Donguk</au><au>Cho, Cheol-Hyung</au><au>Kim, Deok-Soo</au><au>Choo, Hyunseung</au><au>Gervasi, Osvaldo</au><au>Taniar, David</au><au>Gavrilova, Marina</au><au>Laganá, Antonio</au><au>Kumar, Vipin</au><au>Tan, C. J. Kenneth</au><au>Mun, Youngsong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A β-Shape from the Voronoi Diagram of Atoms for Protein Structure Analysis</atitle><btitle>Computational Science and Its Applications - ICCSA 2006</btitle><date>2006</date><risdate>2006</risdate><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354034070X</isbn><isbn>9783540340706</isbn><eisbn>3540340718</eisbn><eisbn>9783540340713</eisbn><abstract>In this paper, we present a β-shape and a β-complex for a set of atoms with arbitrary sizes for a faster response to the topological queries among atoms. These concepts are the generalizations of the well-known α-shape and α-complex (and their weighted counterparts as well). To compute a β-shape, we first compute the Voronoi diagram of atoms and then transform the Voronoi diagram to a quasi-triangulation which is the topological dual of the Voronoi diagram. Then, we compute a β-complex from the quasi-triangulation by analyzing the valid intervals for each simplex in the quasi-triangulation. It is shown that a β-complex can be computed in O(m) time in the worst case from the Voronoi diagram of atoms, where m is the number of simplices in the quasi-triangulation. Then, a β-shape for a particular β consisting of k simplices can be located in O(log m + k) time in the worst case from the simplicies in the β-complex sorted according to the interval values.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11751540_12</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science and Its Applications - ICCSA 2006, 2006, p.101-110
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19968219
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
complex
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
shape
Software
Theoretical computing
Voronoi diagram of spheres
title A β-Shape from the Voronoi Diagram of Atoms for Protein Structure Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20%CE%B2-Shape%20from%20the%20Voronoi%20Diagram%20of%20Atoms%20for%20Protein%20Structure%20Analysis&rft.btitle=Computational%20Science%20and%20Its%20Applications%20-%20ICCSA%202006&rft.au=Seo,%20Jeongyeon&rft.date=2006&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354034070X&rft.isbn_list=9783540340706&rft_id=info:doi/10.1007/11751540_12&rft_dat=%3Cpascalfrancis_sprin%3E19968219%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540340718&rft.eisbn_list=9783540340713&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true