Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method
In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are desc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2007-12, Vol.52 (12), p.2385-2389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2389 |
---|---|
container_issue | 12 |
container_start_page | 2385 |
container_title | IEEE transactions on automatic control |
container_volume | 52 |
creator | Vinagre, B.M. Feliu, V. |
description | In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed. |
doi_str_mv | 10.1109/TAC.2007.910728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_19939641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4395191</ieee_id><sourcerecordid>34444743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</originalsourceid><addsrcrecordid>eNp9kc9rFDEYhoMouLY9e_ASBEsvs82XX5N4WxbbCpWFtuIxZNKETpmdjEn20P71ZrqLgofmkoT3-Z7D9yL0EcgSgOjzu9V6SQlplxpIS9UbtAAhVEMFZW_RghBQjaZKvkcfcn6sX8k5LNDzZir91g74IllX-jjW5zqOJcVh8CnjEBO-sYdgk-59wrdPufht_opX-Hbyrp8nbPY4BlwePP7V-9Gn5ipO4SUvabZXeUz984sJ__DlId4fo3fBDtmfHO4j9PPi2936qrneXH5fr64bxxQtjZVOOdJR1RIA6rrAeZACuKWCO9o6J9oueCWC7DiAAEc5l8p1HTjpGKPsCJ3uvVOKv3c-F7Pts_PDYEcfd9kwXk_LWQXPXgVBtsCk0lxX9PN_6GPcpbqjbJTkSoFQs-98D7kUc04-mCnVXacnA8TMnZnamZk7M_vO6sSXg9ZmZ4eQ7Oj6_G9Ma6Ylh8p92nO99_5vzJkWoIH9AWCanrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864881583</pqid></control><display><type>article</type><title>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Vinagre, B.M. ; Feliu, V.</creator><creatorcontrib>Vinagre, B.M. ; Feliu, V.</creatorcontrib><description>In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2007.910728</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Closed-form solution ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Controllers ; Design methodology ; Differential equations ; Distributed parameter systems ; Exact sciences and technology ; Factorization ; Filters ; Fractional calculus ; Fractional systems ; Mathematical analysis ; Mathematical models ; Optimal control ; optimal controllers ; Optimization ; Polynomials ; rational order ; Spectra ; spectral factorization ; Transfer functions ; Wiener-Hopf</subject><ispartof>IEEE transactions on automatic control, 2007-12, Vol.52 (12), p.2385-2389</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</citedby><cites>FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4395191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4395191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19939641$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinagre, B.M.</creatorcontrib><creatorcontrib>Feliu, V.</creatorcontrib><title>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.</description><subject>Applied sciences</subject><subject>Closed-form solution</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Controllers</subject><subject>Design methodology</subject><subject>Differential equations</subject><subject>Distributed parameter systems</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Filters</subject><subject>Fractional calculus</subject><subject>Fractional systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>optimal controllers</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>rational order</subject><subject>Spectra</subject><subject>spectral factorization</subject><subject>Transfer functions</subject><subject>Wiener-Hopf</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9rFDEYhoMouLY9e_ASBEsvs82XX5N4WxbbCpWFtuIxZNKETpmdjEn20P71ZrqLgofmkoT3-Z7D9yL0EcgSgOjzu9V6SQlplxpIS9UbtAAhVEMFZW_RghBQjaZKvkcfcn6sX8k5LNDzZir91g74IllX-jjW5zqOJcVh8CnjEBO-sYdgk-59wrdPufht_opX-Hbyrp8nbPY4BlwePP7V-9Gn5ipO4SUvabZXeUz984sJ__DlId4fo3fBDtmfHO4j9PPi2936qrneXH5fr64bxxQtjZVOOdJR1RIA6rrAeZACuKWCO9o6J9oueCWC7DiAAEc5l8p1HTjpGKPsCJ3uvVOKv3c-F7Pts_PDYEcfd9kwXk_LWQXPXgVBtsCk0lxX9PN_6GPcpbqjbJTkSoFQs-98D7kUc04-mCnVXacnA8TMnZnamZk7M_vO6sSXg9ZmZ4eQ7Oj6_G9Ma6Ylh8p92nO99_5vzJkWoIH9AWCanrc</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Vinagre, B.M.</creator><creator>Feliu, V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20071201</creationdate><title>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</title><author>Vinagre, B.M. ; Feliu, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Closed-form solution</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Controllers</topic><topic>Design methodology</topic><topic>Differential equations</topic><topic>Distributed parameter systems</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Filters</topic><topic>Fractional calculus</topic><topic>Fractional systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>optimal controllers</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>rational order</topic><topic>Spectra</topic><topic>spectral factorization</topic><topic>Transfer functions</topic><topic>Wiener-Hopf</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinagre, B.M.</creatorcontrib><creatorcontrib>Feliu, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vinagre, B.M.</au><au>Feliu, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>52</volume><issue>12</issue><spage>2385</spage><epage>2389</epage><pages>2385-2389</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2007.910728</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2007-12, Vol.52 (12), p.2385-2389 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_19939641 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Closed-form solution Computer science control theory systems Control systems Control theory. Systems Controllers Design methodology Differential equations Distributed parameter systems Exact sciences and technology Factorization Filters Fractional calculus Fractional systems Mathematical analysis Mathematical models Optimal control optimal controllers Optimization Polynomials rational order Spectra spectral factorization Transfer functions Wiener-Hopf |
title | Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Fractional%20Controllers%20for%20Rational%20Order%20Systems:%20A%20Special%20Case%20of%20the%20Wiener-Hopf%20Spectral%20Factorization%20Method&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Vinagre,%20B.M.&rft.date=2007-12-01&rft.volume=52&rft.issue=12&rft.spage=2385&rft.epage=2389&rft.pages=2385-2389&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2007.910728&rft_dat=%3Cproquest_RIE%3E34444743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864881583&rft_id=info:pmid/&rft_ieee_id=4395191&rfr_iscdi=true |