Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method

In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are desc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2007-12, Vol.52 (12), p.2385-2389
Hauptverfasser: Vinagre, B.M., Feliu, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2389
container_issue 12
container_start_page 2385
container_title IEEE transactions on automatic control
container_volume 52
creator Vinagre, B.M.
Feliu, V.
description In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.
doi_str_mv 10.1109/TAC.2007.910728
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_19939641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4395191</ieee_id><sourcerecordid>34444743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</originalsourceid><addsrcrecordid>eNp9kc9rFDEYhoMouLY9e_ASBEsvs82XX5N4WxbbCpWFtuIxZNKETpmdjEn20P71ZrqLgofmkoT3-Z7D9yL0EcgSgOjzu9V6SQlplxpIS9UbtAAhVEMFZW_RghBQjaZKvkcfcn6sX8k5LNDzZir91g74IllX-jjW5zqOJcVh8CnjEBO-sYdgk-59wrdPufht_opX-Hbyrp8nbPY4BlwePP7V-9Gn5ipO4SUvabZXeUz984sJ__DlId4fo3fBDtmfHO4j9PPi2936qrneXH5fr64bxxQtjZVOOdJR1RIA6rrAeZACuKWCO9o6J9oueCWC7DiAAEc5l8p1HTjpGKPsCJ3uvVOKv3c-F7Pts_PDYEcfd9kwXk_LWQXPXgVBtsCk0lxX9PN_6GPcpbqjbJTkSoFQs-98D7kUc04-mCnVXacnA8TMnZnamZk7M_vO6sSXg9ZmZ4eQ7Oj6_G9Ma6Ylh8p92nO99_5vzJkWoIH9AWCanrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864881583</pqid></control><display><type>article</type><title>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Vinagre, B.M. ; Feliu, V.</creator><creatorcontrib>Vinagre, B.M. ; Feliu, V.</creatorcontrib><description>In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2007.910728</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Closed-form solution ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Controllers ; Design methodology ; Differential equations ; Distributed parameter systems ; Exact sciences and technology ; Factorization ; Filters ; Fractional calculus ; Fractional systems ; Mathematical analysis ; Mathematical models ; Optimal control ; optimal controllers ; Optimization ; Polynomials ; rational order ; Spectra ; spectral factorization ; Transfer functions ; Wiener-Hopf</subject><ispartof>IEEE transactions on automatic control, 2007-12, Vol.52 (12), p.2385-2389</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</citedby><cites>FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4395191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4395191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19939641$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinagre, B.M.</creatorcontrib><creatorcontrib>Feliu, V.</creatorcontrib><title>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.</description><subject>Applied sciences</subject><subject>Closed-form solution</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Controllers</subject><subject>Design methodology</subject><subject>Differential equations</subject><subject>Distributed parameter systems</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Filters</subject><subject>Fractional calculus</subject><subject>Fractional systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>optimal controllers</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>rational order</subject><subject>Spectra</subject><subject>spectral factorization</subject><subject>Transfer functions</subject><subject>Wiener-Hopf</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9rFDEYhoMouLY9e_ASBEsvs82XX5N4WxbbCpWFtuIxZNKETpmdjEn20P71ZrqLgofmkoT3-Z7D9yL0EcgSgOjzu9V6SQlplxpIS9UbtAAhVEMFZW_RghBQjaZKvkcfcn6sX8k5LNDzZir91g74IllX-jjW5zqOJcVh8CnjEBO-sYdgk-59wrdPufht_opX-Hbyrp8nbPY4BlwePP7V-9Gn5ipO4SUvabZXeUz984sJ__DlId4fo3fBDtmfHO4j9PPi2936qrneXH5fr64bxxQtjZVOOdJR1RIA6rrAeZACuKWCO9o6J9oueCWC7DiAAEc5l8p1HTjpGKPsCJ3uvVOKv3c-F7Pts_PDYEcfd9kwXk_LWQXPXgVBtsCk0lxX9PN_6GPcpbqjbJTkSoFQs-98D7kUc04-mCnVXacnA8TMnZnamZk7M_vO6sSXg9ZmZ4eQ7Oj6_G9Ma6Ylh8p92nO99_5vzJkWoIH9AWCanrc</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Vinagre, B.M.</creator><creator>Feliu, V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20071201</creationdate><title>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</title><author>Vinagre, B.M. ; Feliu, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a6c8c0b2870112cbf44f6514a254c27cc57bfe85f6b41151c24468cbb1c6c3323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Closed-form solution</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Controllers</topic><topic>Design methodology</topic><topic>Differential equations</topic><topic>Distributed parameter systems</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Filters</topic><topic>Fractional calculus</topic><topic>Fractional systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>optimal controllers</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>rational order</topic><topic>Spectra</topic><topic>spectral factorization</topic><topic>Transfer functions</topic><topic>Wiener-Hopf</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinagre, B.M.</creatorcontrib><creatorcontrib>Feliu, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vinagre, B.M.</au><au>Feliu, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>52</volume><issue>12</issue><spage>2385</spage><epage>2389</epage><pages>2385-2389</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in s alpha , alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2007.910728</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2007-12, Vol.52 (12), p.2385-2389
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_19939641
source IEEE Electronic Library (IEL)
subjects Applied sciences
Closed-form solution
Computer science
control theory
systems
Control systems
Control theory. Systems
Controllers
Design methodology
Differential equations
Distributed parameter systems
Exact sciences and technology
Factorization
Filters
Fractional calculus
Fractional systems
Mathematical analysis
Mathematical models
Optimal control
optimal controllers
Optimization
Polynomials
rational order
Spectra
spectral factorization
Transfer functions
Wiener-Hopf
title Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Fractional%20Controllers%20for%20Rational%20Order%20Systems:%20A%20Special%20Case%20of%20the%20Wiener-Hopf%20Spectral%20Factorization%20Method&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Vinagre,%20B.M.&rft.date=2007-12-01&rft.volume=52&rft.issue=12&rft.spage=2385&rft.epage=2389&rft.pages=2385-2389&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2007.910728&rft_dat=%3Cproquest_RIE%3E34444743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864881583&rft_id=info:pmid/&rft_ieee_id=4395191&rfr_iscdi=true