Motion Detection Using Wavelet Analysis and Hierarchical Markov Models

This paper deals with the motion detection problem. This issue is of key importance in many application fields. To solve this problem, we compute the dominant motion in the sequence using a wavelet analysis and robust techniques. So, we obtain an estimation of the dominant motion on several image re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Demonceaux, Cédric, Kachi-Akkouche, Djemâa
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 64
container_title
container_volume
creator Demonceaux, Cédric
Kachi-Akkouche, Djemâa
description This paper deals with the motion detection problem. This issue is of key importance in many application fields. To solve this problem, we compute the dominant motion in the sequence using a wavelet analysis and robust techniques. So, we obtain an estimation of the dominant motion on several image resolutions. This method permits to define a hierarchical Markov model in a natural way. Thanks to this modelization, we overcome two problems: the solution sensibility in relation to the initial condition with a Markov random field, and the temporal aliasing. Moreover, we obtain a semi-iterative algorithm faster than using the multi-scale techniques. Thus, we introduce a fast and robust algorithm in order to compute the motion detection in an image sequence. This method is validated on real image sequences.
doi_str_mv 10.1007/11676959_6
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938931</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-5f9fad99f0fabead96da22e2ab672b597084302e5cb7378063cb460654d90abe3</originalsourceid><addsrcrecordid>eNpVUE1LAzEUjF9gqb34C3IRvKy-5OVjcyzVWqHFi8VjyO5m69p1tyRLof_eaAXxXWZgZh7DEHLN4I4B6HvGlFZGGqtOyMToHKUA5BKFPCUjphjLEIU5-6dhfk5GgMAzowVekkmMH5AOOTAJIzJf9UPTd_TBD778YevYdBv65va-9QOddq49xCZS11V00fjgQvnelK6lKxe2_Z6u-sq38Ypc1K6NfvKLY7KeP77OFtny5el5Nl1mO87yIZO1qV1lTA21K3xiqnKce-4KpXkhjYZcpK5eloVGnYPCshAKlBSVgZTAMbk5_t25mErUwXVlE-0uNJ8uHCwzBnODLPluj76YpG7jgy36fhstA_s9pf2bEr8Aa3pf3g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Motion Detection Using Wavelet Analysis and Hierarchical Markov Models</title><source>Springer Books</source><creator>Demonceaux, Cédric ; Kachi-Akkouche, Djemâa</creator><contributor>MacLean, W. James</contributor><creatorcontrib>Demonceaux, Cédric ; Kachi-Akkouche, Djemâa ; MacLean, W. James</creatorcontrib><description>This paper deals with the motion detection problem. This issue is of key importance in many application fields. To solve this problem, we compute the dominant motion in the sequence using a wavelet analysis and robust techniques. So, we obtain an estimation of the dominant motion on several image resolutions. This method permits to define a hierarchical Markov model in a natural way. Thanks to this modelization, we overcome two problems: the solution sensibility in relation to the initial condition with a Markov random field, and the temporal aliasing. Moreover, we obtain a semi-iterative algorithm faster than using the multi-scale techniques. Thus, we introduce a fast and robust algorithm in order to compute the motion detection in an image sequence. This method is validated on real image sequences.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540325338</identifier><identifier>ISBN: 3540325336</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540325345</identifier><identifier>EISBN: 3540325344</identifier><identifier>DOI: 10.1007/11676959_6</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Coarse Scale ; Computer science; control theory; systems ; Exact sciences and technology ; Motion Compensation ; Motion Detection ; Motion Estimation ; Pattern recognition. Digital image processing. Computational geometry ; Wavelet Analysis</subject><ispartof>Lecture notes in computer science, 2006, p.64-75</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11676959_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11676959_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19938931$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>MacLean, W. James</contributor><creatorcontrib>Demonceaux, Cédric</creatorcontrib><creatorcontrib>Kachi-Akkouche, Djemâa</creatorcontrib><title>Motion Detection Using Wavelet Analysis and Hierarchical Markov Models</title><title>Lecture notes in computer science</title><description>This paper deals with the motion detection problem. This issue is of key importance in many application fields. To solve this problem, we compute the dominant motion in the sequence using a wavelet analysis and robust techniques. So, we obtain an estimation of the dominant motion on several image resolutions. This method permits to define a hierarchical Markov model in a natural way. Thanks to this modelization, we overcome two problems: the solution sensibility in relation to the initial condition with a Markov random field, and the temporal aliasing. Moreover, we obtain a semi-iterative algorithm faster than using the multi-scale techniques. Thus, we introduce a fast and robust algorithm in order to compute the motion detection in an image sequence. This method is validated on real image sequences.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Coarse Scale</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Motion Compensation</subject><subject>Motion Detection</subject><subject>Motion Estimation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Wavelet Analysis</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540325338</isbn><isbn>3540325336</isbn><isbn>9783540325345</isbn><isbn>3540325344</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUE1LAzEUjF9gqb34C3IRvKy-5OVjcyzVWqHFi8VjyO5m69p1tyRLof_eaAXxXWZgZh7DEHLN4I4B6HvGlFZGGqtOyMToHKUA5BKFPCUjphjLEIU5-6dhfk5GgMAzowVekkmMH5AOOTAJIzJf9UPTd_TBD778YevYdBv65va-9QOddq49xCZS11V00fjgQvnelK6lKxe2_Z6u-sq38Ypc1K6NfvKLY7KeP77OFtny5el5Nl1mO87yIZO1qV1lTA21K3xiqnKce-4KpXkhjYZcpK5eloVGnYPCshAKlBSVgZTAMbk5_t25mErUwXVlE-0uNJ8uHCwzBnODLPluj76YpG7jgy36fhstA_s9pf2bEr8Aa3pf3g</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Demonceaux, Cédric</creator><creator>Kachi-Akkouche, Djemâa</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Motion Detection Using Wavelet Analysis and Hierarchical Markov Models</title><author>Demonceaux, Cédric ; Kachi-Akkouche, Djemâa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-5f9fad99f0fabead96da22e2ab672b597084302e5cb7378063cb460654d90abe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Coarse Scale</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Motion Compensation</topic><topic>Motion Detection</topic><topic>Motion Estimation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Wavelet Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demonceaux, Cédric</creatorcontrib><creatorcontrib>Kachi-Akkouche, Djemâa</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demonceaux, Cédric</au><au>Kachi-Akkouche, Djemâa</au><au>MacLean, W. James</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Motion Detection Using Wavelet Analysis and Hierarchical Markov Models</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>64</spage><epage>75</epage><pages>64-75</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540325338</isbn><isbn>3540325336</isbn><eisbn>9783540325345</eisbn><eisbn>3540325344</eisbn><abstract>This paper deals with the motion detection problem. This issue is of key importance in many application fields. To solve this problem, we compute the dominant motion in the sequence using a wavelet analysis and robust techniques. So, we obtain an estimation of the dominant motion on several image resolutions. This method permits to define a hierarchical Markov model in a natural way. Thanks to this modelization, we overcome two problems: the solution sensibility in relation to the initial condition with a Markov random field, and the temporal aliasing. Moreover, we obtain a semi-iterative algorithm faster than using the multi-scale techniques. Thus, we introduce a fast and robust algorithm in order to compute the motion detection in an image sequence. This method is validated on real image sequences.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11676959_6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.64-75
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19938931
source Springer Books
subjects Applied sciences
Artificial intelligence
Coarse Scale
Computer science
control theory
systems
Exact sciences and technology
Motion Compensation
Motion Detection
Motion Estimation
Pattern recognition. Digital image processing. Computational geometry
Wavelet Analysis
title Motion Detection Using Wavelet Analysis and Hierarchical Markov Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Motion%20Detection%20Using%20Wavelet%20Analysis%20and%20Hierarchical%20Markov%20Models&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Demonceaux,%20C%C3%A9dric&rft.date=2006&rft.spage=64&rft.epage=75&rft.pages=64-75&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540325338&rft.isbn_list=3540325336&rft_id=info:doi/10.1007/11676959_6&rft_dat=%3Cpascalfrancis_sprin%3E19938931%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540325345&rft.eisbn_list=3540325344&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true