Interfaces as Games, Programs as Strategies

Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Michelbrink, Markus
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue
container_start_page 215
container_title
container_volume
creator Michelbrink, Markus
description Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now).
doi_str_mv 10.1007/11617990_14
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938571</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4668a3d5c2f9a52d6424a408821429d0b2cfe16c17bbb8187fc2dc69319873ff3</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhuMXWNae_AO9eBCtZjJpkxxl0XVhQUE9l2malNXtB0kv_nur60Hn8sI8L8PwMHYO_AY4V7cAJShjeAXygKVGaSwkR5DCFIcsmSHkiNIc_WNaH7OEIxe5URJPWRrjO58HBS8kJOxq3U8ueLIuZhSzFXUuXmfPYWgDdT-rlynQ5Nqti2fsxNMuuvQ3F-zt4f51-Zhvnlbr5d0mHwWYKZdlqQmbwgpvqBBNKYUkybUW3782vBbWOygtqLquNWjlrWhsaRCMVug9LtjF_u5I0dLOB-rtNlZj2HYUPiswBnWhYO5d7ntxRn3rQlUPw0esYFY0C6v-CMMv9X9VLQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Interfaces as Games, Programs as Strategies</title><source>Springer Books</source><creator>Michelbrink, Markus</creator><contributor>Paulin-Mohring, Christine ; Filliâtre, Jean-Christophe ; Werner, Benjamin</contributor><creatorcontrib>Michelbrink, Markus ; Paulin-Mohring, Christine ; Filliâtre, Jean-Christophe ; Werner, Benjamin</creatorcontrib><description>Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now).</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540314288</identifier><identifier>ISBN: 3540314288</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540314295</identifier><identifier>EISBN: 3540314296</identifier><identifier>DOI: 10.1007/11617990_14</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Programming languages ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.215-231</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11617990_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11617990_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19938571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paulin-Mohring, Christine</contributor><contributor>Filliâtre, Jean-Christophe</contributor><contributor>Werner, Benjamin</contributor><creatorcontrib>Michelbrink, Markus</creatorcontrib><title>Interfaces as Games, Programs as Strategies</title><title>Lecture notes in computer science</title><description>Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now).</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Programming languages</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540314288</isbn><isbn>3540314288</isbn><isbn>9783540314295</isbn><isbn>3540314296</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkE1LxDAQhuMXWNae_AO9eBCtZjJpkxxl0XVhQUE9l2malNXtB0kv_nur60Hn8sI8L8PwMHYO_AY4V7cAJShjeAXygKVGaSwkR5DCFIcsmSHkiNIc_WNaH7OEIxe5URJPWRrjO58HBS8kJOxq3U8ueLIuZhSzFXUuXmfPYWgDdT-rlynQ5Nqti2fsxNMuuvQ3F-zt4f51-Zhvnlbr5d0mHwWYKZdlqQmbwgpvqBBNKYUkybUW3782vBbWOygtqLquNWjlrWhsaRCMVug9LtjF_u5I0dLOB-rtNlZj2HYUPiswBnWhYO5d7ntxRn3rQlUPw0esYFY0C6v-CMMv9X9VLQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Michelbrink, Markus</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Interfaces as Games, Programs as Strategies</title><author>Michelbrink, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4668a3d5c2f9a52d6424a408821429d0b2cfe16c17bbb8187fc2dc69319873ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Programming languages</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michelbrink, Markus</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michelbrink, Markus</au><au>Paulin-Mohring, Christine</au><au>Filliâtre, Jean-Christophe</au><au>Werner, Benjamin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Interfaces as Games, Programs as Strategies</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>215</spage><epage>231</epage><pages>215-231</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540314288</isbn><isbn>3540314288</isbn><eisbn>9783540314295</eisbn><eisbn>3540314296</eisbn><abstract>Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now).</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11617990_14</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.215-231
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19938571
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Programming languages
Software
title Interfaces as Games, Programs as Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Interfaces%20as%20Games,%20Programs%20as%20Strategies&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Michelbrink,%20Markus&rft.date=2006&rft.spage=215&rft.epage=231&rft.pages=215-231&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540314288&rft.isbn_list=3540314288&rft_id=info:doi/10.1007/11617990_14&rft_dat=%3Cpascalfrancis_sprin%3E19938571%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540314295&rft.eisbn_list=3540314296&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true