Interfaces as Games, Programs as Strategies
Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | |
container_start_page | 215 |
container_title | |
container_volume | |
creator | Michelbrink, Markus |
description | Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now). |
doi_str_mv | 10.1007/11617990_14 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938571</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4668a3d5c2f9a52d6424a408821429d0b2cfe16c17bbb8187fc2dc69319873ff3</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhuMXWNae_AO9eBCtZjJpkxxl0XVhQUE9l2malNXtB0kv_nur60Hn8sI8L8PwMHYO_AY4V7cAJShjeAXygKVGaSwkR5DCFIcsmSHkiNIc_WNaH7OEIxe5URJPWRrjO58HBS8kJOxq3U8ueLIuZhSzFXUuXmfPYWgDdT-rlynQ5Nqti2fsxNMuuvQ3F-zt4f51-Zhvnlbr5d0mHwWYKZdlqQmbwgpvqBBNKYUkybUW3782vBbWOygtqLquNWjlrWhsaRCMVug9LtjF_u5I0dLOB-rtNlZj2HYUPiswBnWhYO5d7ntxRn3rQlUPw0esYFY0C6v-CMMv9X9VLQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Interfaces as Games, Programs as Strategies</title><source>Springer Books</source><creator>Michelbrink, Markus</creator><contributor>Paulin-Mohring, Christine ; Filliâtre, Jean-Christophe ; Werner, Benjamin</contributor><creatorcontrib>Michelbrink, Markus ; Paulin-Mohring, Christine ; Filliâtre, Jean-Christophe ; Werner, Benjamin</creatorcontrib><description>Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now).</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540314288</identifier><identifier>ISBN: 3540314288</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540314295</identifier><identifier>EISBN: 3540314296</identifier><identifier>DOI: 10.1007/11617990_14</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Programming languages ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.215-231</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11617990_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11617990_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19938571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paulin-Mohring, Christine</contributor><contributor>Filliâtre, Jean-Christophe</contributor><contributor>Werner, Benjamin</contributor><creatorcontrib>Michelbrink, Markus</creatorcontrib><title>Interfaces as Games, Programs as Strategies</title><title>Lecture notes in computer science</title><description>Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now).</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Programming languages</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540314288</isbn><isbn>3540314288</isbn><isbn>9783540314295</isbn><isbn>3540314296</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkE1LxDAQhuMXWNae_AO9eBCtZjJpkxxl0XVhQUE9l2malNXtB0kv_nur60Hn8sI8L8PwMHYO_AY4V7cAJShjeAXygKVGaSwkR5DCFIcsmSHkiNIc_WNaH7OEIxe5URJPWRrjO58HBS8kJOxq3U8ueLIuZhSzFXUuXmfPYWgDdT-rlynQ5Nqti2fsxNMuuvQ3F-zt4f51-Zhvnlbr5d0mHwWYKZdlqQmbwgpvqBBNKYUkybUW3782vBbWOygtqLquNWjlrWhsaRCMVug9LtjF_u5I0dLOB-rtNlZj2HYUPiswBnWhYO5d7ntxRn3rQlUPw0esYFY0C6v-CMMv9X9VLQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Michelbrink, Markus</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Interfaces as Games, Programs as Strategies</title><author>Michelbrink, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4668a3d5c2f9a52d6424a408821429d0b2cfe16c17bbb8187fc2dc69319873ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Programming languages</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michelbrink, Markus</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michelbrink, Markus</au><au>Paulin-Mohring, Christine</au><au>Filliâtre, Jean-Christophe</au><au>Werner, Benjamin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Interfaces as Games, Programs as Strategies</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>215</spage><epage>231</epage><pages>215-231</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540314288</isbn><isbn>3540314288</isbn><eisbn>9783540314295</eisbn><eisbn>3540314296</eisbn><abstract>Peter Hancock and Anton Setzer developed the notion of interface to introduce interactive programming into dependent type theory. We generalise their notion and get an even simpler definition for interfaces. With this definition the relationship of interfaces to games becomes apparent. In fact from a game theoretical point of view interfaces are nothing other than special games. Programs are strategies for these games. There is an obvious notion of refinement which coincides exactly with the intuition. Interfaces together with the re.nement relation build a complete lattice. We can define several operators on interfaces: tensor, par, choice, bang etc. Every notion has a dual notion by interchanging the viewpoint of player and opponent. Identifying strategies by some kind of behavioural equivalence we conjecture to receive a linear category. All results so far can be achieved in intensional Martin-Löf Type Theory and are verified in the theorem prover Agda (with the exception of associativity of composition which is only proved on paper until now).</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11617990_14</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.215-231 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19938571 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Programming languages Software |
title | Interfaces as Games, Programs as Strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Interfaces%20as%20Games,%20Programs%20as%20Strategies&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Michelbrink,%20Markus&rft.date=2006&rft.spage=215&rft.epage=231&rft.pages=215-231&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540314288&rft.isbn_list=3540314288&rft_id=info:doi/10.1007/11617990_14&rft_dat=%3Cpascalfrancis_sprin%3E19938571%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540314295&rft.eisbn_list=3540314296&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |