Formalising Bitonic Sort in Type Theory

We discuss two complete formalisations of bitonic sort in constructive type theory. Bitonic sort is one of the fastest sorting algorithms where the sequence of comparisons is not data-dependent. In addition, it is a general recursive algorithm. In the formalisation we face two main problems: only st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bove, Ana, Coquand, Thierry
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 82
container_title
container_volume
creator Bove, Ana
Coquand, Thierry
description We discuss two complete formalisations of bitonic sort in constructive type theory. Bitonic sort is one of the fastest sorting algorithms where the sequence of comparisons is not data-dependent. In addition, it is a general recursive algorithm. In the formalisation we face two main problems: only structural recursion is allowed in type theory, and a formal proof of the correctness of the algorithm needs to consider quite a number of cases. In our first formalisation we define bitonic sort over dependently-typed binary trees with information in the leaves and we make use of the 0-1-principle to prove that the algorithm sorts inputs of arbitrary types. In our second formalisation we use notions from linear orders, lattice theory and monoids. The correctness proof is directly performed for any ordered set and not only for Boolean values.
doi_str_mv 10.1007/11617990_6
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938563</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-5c99061bd50552e5f12d7f453172810b4e4ea4acad3b06a47d5c8d34edcd49163</originalsourceid><addsrcrecordid>eNpVkD1PwzAYhM2XRFWy8AuyIFgCfv3asT1CRQGpEgNhthzbKYY2iewu_fcEFQlxyw3P6XQ6Qi6B3gKl8g6gBqk1NfURKbRUKDhF4EyLYzKbGFSIXJ_8Y0qdkhlFyiotOZ6TIudPOgkZFRxm5Ho5pK3dxBz7dfkQd0MfXfk2pF0Z-7LZj6FsPsKQ9hfkrLObHIpfn5P35WOzeK5Wr08vi_tVNTJQu0q4aV8NrRdUCBZEB8zLjgsEyRTQlgceLLfOemxpbbn0wimPPHjnuYYa5-Tq0Dva7OymS7Z3MZsxxa1NewNaoxI1TrmbQy5PqF-HZNph-MoGqPn5yvx9hd8RK1PG</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Formalising Bitonic Sort in Type Theory</title><source>Springer Books</source><creator>Bove, Ana ; Coquand, Thierry</creator><contributor>Paulin-Mohring, Christine ; Filliâtre, Jean-Christophe ; Werner, Benjamin</contributor><creatorcontrib>Bove, Ana ; Coquand, Thierry ; Paulin-Mohring, Christine ; Filliâtre, Jean-Christophe ; Werner, Benjamin</creatorcontrib><description>We discuss two complete formalisations of bitonic sort in constructive type theory. Bitonic sort is one of the fastest sorting algorithms where the sequence of comparisons is not data-dependent. In addition, it is a general recursive algorithm. In the formalisation we face two main problems: only structural recursion is allowed in type theory, and a formal proof of the correctness of the algorithm needs to consider quite a number of cases. In our first formalisation we define bitonic sort over dependently-typed binary trees with information in the leaves and we make use of the 0-1-principle to prove that the algorithm sorts inputs of arbitrary types. In our second formalisation we use notions from linear orders, lattice theory and monoids. The correctness proof is directly performed for any ordered set and not only for Boolean values.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540314288</identifier><identifier>ISBN: 3540314288</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540314295</identifier><identifier>EISBN: 3540314296</identifier><identifier>DOI: 10.1007/11617990_6</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithm Sort ; Applied sciences ; Binary Tree ; Computer science; control theory; systems ; Distributive Lattice ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linear Order ; Physics ; Programming languages ; Software ; Solid mechanics ; Structural and continuum mechanics ; Type Theory</subject><ispartof>Lecture notes in computer science, 2006, p.82-97</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11617990_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11617990_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19938563$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paulin-Mohring, Christine</contributor><contributor>Filliâtre, Jean-Christophe</contributor><contributor>Werner, Benjamin</contributor><creatorcontrib>Bove, Ana</creatorcontrib><creatorcontrib>Coquand, Thierry</creatorcontrib><title>Formalising Bitonic Sort in Type Theory</title><title>Lecture notes in computer science</title><description>We discuss two complete formalisations of bitonic sort in constructive type theory. Bitonic sort is one of the fastest sorting algorithms where the sequence of comparisons is not data-dependent. In addition, it is a general recursive algorithm. In the formalisation we face two main problems: only structural recursion is allowed in type theory, and a formal proof of the correctness of the algorithm needs to consider quite a number of cases. In our first formalisation we define bitonic sort over dependently-typed binary trees with information in the leaves and we make use of the 0-1-principle to prove that the algorithm sorts inputs of arbitrary types. In our second formalisation we use notions from linear orders, lattice theory and monoids. The correctness proof is directly performed for any ordered set and not only for Boolean values.</description><subject>Algorithm Sort</subject><subject>Applied sciences</subject><subject>Binary Tree</subject><subject>Computer science; control theory; systems</subject><subject>Distributive Lattice</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear Order</subject><subject>Physics</subject><subject>Programming languages</subject><subject>Software</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Type Theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540314288</isbn><isbn>3540314288</isbn><isbn>9783540314295</isbn><isbn>3540314296</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkD1PwzAYhM2XRFWy8AuyIFgCfv3asT1CRQGpEgNhthzbKYY2iewu_fcEFQlxyw3P6XQ6Qi6B3gKl8g6gBqk1NfURKbRUKDhF4EyLYzKbGFSIXJ_8Y0qdkhlFyiotOZ6TIudPOgkZFRxm5Ho5pK3dxBz7dfkQd0MfXfk2pF0Z-7LZj6FsPsKQ9hfkrLObHIpfn5P35WOzeK5Wr08vi_tVNTJQu0q4aV8NrRdUCBZEB8zLjgsEyRTQlgceLLfOemxpbbn0wimPPHjnuYYa5-Tq0Dva7OymS7Z3MZsxxa1NewNaoxI1TrmbQy5PqF-HZNph-MoGqPn5yvx9hd8RK1PG</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Bove, Ana</creator><creator>Coquand, Thierry</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Formalising Bitonic Sort in Type Theory</title><author>Bove, Ana ; Coquand, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-5c99061bd50552e5f12d7f453172810b4e4ea4acad3b06a47d5c8d34edcd49163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithm Sort</topic><topic>Applied sciences</topic><topic>Binary Tree</topic><topic>Computer science; control theory; systems</topic><topic>Distributive Lattice</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear Order</topic><topic>Physics</topic><topic>Programming languages</topic><topic>Software</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Type Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bove, Ana</creatorcontrib><creatorcontrib>Coquand, Thierry</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bove, Ana</au><au>Coquand, Thierry</au><au>Paulin-Mohring, Christine</au><au>Filliâtre, Jean-Christophe</au><au>Werner, Benjamin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Formalising Bitonic Sort in Type Theory</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>82</spage><epage>97</epage><pages>82-97</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540314288</isbn><isbn>3540314288</isbn><eisbn>9783540314295</eisbn><eisbn>3540314296</eisbn><abstract>We discuss two complete formalisations of bitonic sort in constructive type theory. Bitonic sort is one of the fastest sorting algorithms where the sequence of comparisons is not data-dependent. In addition, it is a general recursive algorithm. In the formalisation we face two main problems: only structural recursion is allowed in type theory, and a formal proof of the correctness of the algorithm needs to consider quite a number of cases. In our first formalisation we define bitonic sort over dependently-typed binary trees with information in the leaves and we make use of the 0-1-principle to prove that the algorithm sorts inputs of arbitrary types. In our second formalisation we use notions from linear orders, lattice theory and monoids. The correctness proof is directly performed for any ordered set and not only for Boolean values.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11617990_6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.82-97
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19938563
source Springer Books
subjects Algorithm Sort
Applied sciences
Binary Tree
Computer science
control theory
systems
Distributive Lattice
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Linear Order
Physics
Programming languages
Software
Solid mechanics
Structural and continuum mechanics
Type Theory
title Formalising Bitonic Sort in Type Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Formalising%20Bitonic%20Sort%20in%20Type%20Theory&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Bove,%20Ana&rft.date=2006&rft.spage=82&rft.epage=97&rft.pages=82-97&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540314288&rft.isbn_list=3540314288&rft_id=info:doi/10.1007/11617990_6&rft_dat=%3Cpascalfrancis_sprin%3E19938563%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540314295&rft.eisbn_list=3540314296&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true