Robust Variational Segmentation of 3D Objects from Multiple Views

We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kolev, Kalin, Brox, Thomas, Cremers, Daniel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue
container_start_page 688
container_title
container_volume
creator Kolev, Kalin
Brox, Thomas
Cremers, Daniel
description We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization.
doi_str_mv 10.1007/11861898_69
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-c7d1d7c390827b6c1c9ae8bb0619a1643c8166010d41003a0534b0ebc8c0a9a23</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ2M06jn2sWl5SUSUevVq261QpaVLFqRD_nkBBYi-j1YxGmo-xC4RrBMhvEJVEpZWR-oCNdK4oEyCEQJEdsgFKxIRI6CN29mek6TEbAEGa6FzQKRvFuIb-CDVlasDGz43bxY4vbFvarmxqW_GXsNqEuvt5eVNwmvK5WwffRV60zYY_7aqu3FaBL8rwEc_ZSWGrGEa_OmRvd7evk4dkNr9_nIxniU8ldonPl7jMPWlQae6kR69tUM6BRG1RCvIKpQSEpeinkoWMhIPgvPJgtU1pyC73vVsbva2K1ta-jGbblhvbfhrUmnocqs9d7XOxt-pVaI1rmvdoEMw3Q_OPIX0BduRcvQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Variational Segmentation of 3D Objects from Multiple Views</title><source>Springer Books</source><creator>Kolev, Kalin ; Brox, Thomas ; Cremers, Daniel</creator><contributor>Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</contributor><creatorcontrib>Kolev, Kalin ; Brox, Thomas ; Cremers, Daniel ; Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</creatorcontrib><description>We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540444122</identifier><identifier>ISBN: 9783540444121</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540444145</identifier><identifier>EISBN: 3540444149</identifier><identifier>DOI: 10.1007/11861898_69</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Vision ; Exact sciences and technology ; Input Image ; Jacobi Formulation ; Multiple View ; Visual Hull</subject><ispartof>Lecture notes in computer science, 2006, p.688-697</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-c7d1d7c390827b6c1c9ae8bb0619a1643c8166010d41003a0534b0ebc8c0a9a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11861898_69$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11861898_69$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19938358$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schäfer, Ralf</contributor><contributor>Franke, Katrin</contributor><contributor>Nickolay, Bertram</contributor><contributor>Müller, Klaus-Robert</contributor><creatorcontrib>Kolev, Kalin</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><title>Robust Variational Segmentation of 3D Objects from Multiple Views</title><title>Lecture notes in computer science</title><description>We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Vision</subject><subject>Exact sciences and technology</subject><subject>Input Image</subject><subject>Jacobi Formulation</subject><subject>Multiple View</subject><subject>Visual Hull</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540444122</isbn><isbn>9783540444121</isbn><isbn>9783540444145</isbn><isbn>3540444149</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ2M06jn2sWl5SUSUevVq261QpaVLFqRD_nkBBYi-j1YxGmo-xC4RrBMhvEJVEpZWR-oCNdK4oEyCEQJEdsgFKxIRI6CN29mek6TEbAEGa6FzQKRvFuIb-CDVlasDGz43bxY4vbFvarmxqW_GXsNqEuvt5eVNwmvK5WwffRV60zYY_7aqu3FaBL8rwEc_ZSWGrGEa_OmRvd7evk4dkNr9_nIxniU8ldonPl7jMPWlQae6kR69tUM6BRG1RCvIKpQSEpeinkoWMhIPgvPJgtU1pyC73vVsbva2K1ta-jGbblhvbfhrUmnocqs9d7XOxt-pVaI1rmvdoEMw3Q_OPIX0BduRcvQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kolev, Kalin</creator><creator>Brox, Thomas</creator><creator>Cremers, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Robust Variational Segmentation of 3D Objects from Multiple Views</title><author>Kolev, Kalin ; Brox, Thomas ; Cremers, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-c7d1d7c390827b6c1c9ae8bb0619a1643c8166010d41003a0534b0ebc8c0a9a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Vision</topic><topic>Exact sciences and technology</topic><topic>Input Image</topic><topic>Jacobi Formulation</topic><topic>Multiple View</topic><topic>Visual Hull</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolev, Kalin</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolev, Kalin</au><au>Brox, Thomas</au><au>Cremers, Daniel</au><au>Schäfer, Ralf</au><au>Franke, Katrin</au><au>Nickolay, Bertram</au><au>Müller, Klaus-Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Variational Segmentation of 3D Objects from Multiple Views</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>688</spage><epage>697</epage><pages>688-697</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540444122</isbn><isbn>9783540444121</isbn><eisbn>9783540444145</eisbn><eisbn>3540444149</eisbn><abstract>We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11861898_69</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.688-697
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19938358
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer Vision
Exact sciences and technology
Input Image
Jacobi Formulation
Multiple View
Visual Hull
title Robust Variational Segmentation of 3D Objects from Multiple Views
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Variational%20Segmentation%20of%203D%20Objects%20from%20Multiple%20Views&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Kolev,%20Kalin&rft.date=2006&rft.spage=688&rft.epage=697&rft.pages=688-697&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540444122&rft.isbn_list=9783540444121&rft_id=info:doi/10.1007/11861898_69&rft_dat=%3Cpascalfrancis_sprin%3E19938358%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540444145&rft.eisbn_list=3540444149&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true