Robust Variational Segmentation of 3D Objects from Multiple Views
We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 697 |
---|---|
container_issue | |
container_start_page | 688 |
container_title | |
container_volume | |
creator | Kolev, Kalin Brox, Thomas Cremers, Daniel |
description | We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization. |
doi_str_mv | 10.1007/11861898_69 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-c7d1d7c390827b6c1c9ae8bb0619a1643c8166010d41003a0534b0ebc8c0a9a23</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ2M06jn2sWl5SUSUevVq261QpaVLFqRD_nkBBYi-j1YxGmo-xC4RrBMhvEJVEpZWR-oCNdK4oEyCEQJEdsgFKxIRI6CN29mek6TEbAEGa6FzQKRvFuIb-CDVlasDGz43bxY4vbFvarmxqW_GXsNqEuvt5eVNwmvK5WwffRV60zYY_7aqu3FaBL8rwEc_ZSWGrGEa_OmRvd7evk4dkNr9_nIxniU8ldonPl7jMPWlQae6kR69tUM6BRG1RCvIKpQSEpeinkoWMhIPgvPJgtU1pyC73vVsbva2K1ta-jGbblhvbfhrUmnocqs9d7XOxt-pVaI1rmvdoEMw3Q_OPIX0BduRcvQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Variational Segmentation of 3D Objects from Multiple Views</title><source>Springer Books</source><creator>Kolev, Kalin ; Brox, Thomas ; Cremers, Daniel</creator><contributor>Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</contributor><creatorcontrib>Kolev, Kalin ; Brox, Thomas ; Cremers, Daniel ; Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</creatorcontrib><description>We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540444122</identifier><identifier>ISBN: 9783540444121</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540444145</identifier><identifier>EISBN: 3540444149</identifier><identifier>DOI: 10.1007/11861898_69</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Vision ; Exact sciences and technology ; Input Image ; Jacobi Formulation ; Multiple View ; Visual Hull</subject><ispartof>Lecture notes in computer science, 2006, p.688-697</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-c7d1d7c390827b6c1c9ae8bb0619a1643c8166010d41003a0534b0ebc8c0a9a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11861898_69$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11861898_69$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19938358$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schäfer, Ralf</contributor><contributor>Franke, Katrin</contributor><contributor>Nickolay, Bertram</contributor><contributor>Müller, Klaus-Robert</contributor><creatorcontrib>Kolev, Kalin</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><title>Robust Variational Segmentation of 3D Objects from Multiple Views</title><title>Lecture notes in computer science</title><description>We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Vision</subject><subject>Exact sciences and technology</subject><subject>Input Image</subject><subject>Jacobi Formulation</subject><subject>Multiple View</subject><subject>Visual Hull</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540444122</isbn><isbn>9783540444121</isbn><isbn>9783540444145</isbn><isbn>3540444149</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ2M06jn2sWl5SUSUevVq261QpaVLFqRD_nkBBYi-j1YxGmo-xC4RrBMhvEJVEpZWR-oCNdK4oEyCEQJEdsgFKxIRI6CN29mek6TEbAEGa6FzQKRvFuIb-CDVlasDGz43bxY4vbFvarmxqW_GXsNqEuvt5eVNwmvK5WwffRV60zYY_7aqu3FaBL8rwEc_ZSWGrGEa_OmRvd7evk4dkNr9_nIxniU8ldonPl7jMPWlQae6kR69tUM6BRG1RCvIKpQSEpeinkoWMhIPgvPJgtU1pyC73vVsbva2K1ta-jGbblhvbfhrUmnocqs9d7XOxt-pVaI1rmvdoEMw3Q_OPIX0BduRcvQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kolev, Kalin</creator><creator>Brox, Thomas</creator><creator>Cremers, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Robust Variational Segmentation of 3D Objects from Multiple Views</title><author>Kolev, Kalin ; Brox, Thomas ; Cremers, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-c7d1d7c390827b6c1c9ae8bb0619a1643c8166010d41003a0534b0ebc8c0a9a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Vision</topic><topic>Exact sciences and technology</topic><topic>Input Image</topic><topic>Jacobi Formulation</topic><topic>Multiple View</topic><topic>Visual Hull</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolev, Kalin</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolev, Kalin</au><au>Brox, Thomas</au><au>Cremers, Daniel</au><au>Schäfer, Ralf</au><au>Franke, Katrin</au><au>Nickolay, Bertram</au><au>Müller, Klaus-Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Variational Segmentation of 3D Objects from Multiple Views</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>688</spage><epage>697</epage><pages>688-697</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540444122</isbn><isbn>9783540444121</isbn><eisbn>9783540444145</eisbn><eisbn>3540444149</eisbn><abstract>We propose a probabilistic formulation of 3D segmentation given a series of images from calibrated cameras. Instead of segmenting each image separately in order to build a 3D surface consistent with these segmentations, we compute the most probable surface that gives rise to the images. Additionally, our method can reconstruct the mean intensity and variance of the extracted object and background. Although it is designed for scenes, where the objects can be distinguished visually from the background (i.e. images of piecewise homogeneous regions), the proposed algorithm can also cope with noisy data. We carry out the numerical implementation in the level set framework. Our experiments on synthetic data sets reveal favorable results compared to state-of-the-art methods, in particular in terms of robustness to noise and initialization.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11861898_69</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.688-697 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19938358 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Computer Vision Exact sciences and technology Input Image Jacobi Formulation Multiple View Visual Hull |
title | Robust Variational Segmentation of 3D Objects from Multiple Views |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Variational%20Segmentation%20of%203D%20Objects%20from%20Multiple%20Views&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Kolev,%20Kalin&rft.date=2006&rft.spage=688&rft.epage=697&rft.pages=688-697&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540444122&rft.isbn_list=9783540444121&rft_id=info:doi/10.1007/11861898_69&rft_dat=%3Cpascalfrancis_sprin%3E19938358%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540444145&rft.eisbn_list=3540444149&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |