Phase Based 3D Texture Features
In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | |
container_start_page | 263 |
container_title | |
container_volume | |
creator | Fehr, Janis Burkhardt, Hans |
description | In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction.
The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope. |
doi_str_mv | 10.1007/11861898_27 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-5908b4d7b0a2735dfef6ff5b51365c897016b2b7fd2b475fb8da81c897a167983</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRCiZ-AFkYWAI-PXrj9cjFApIlWAos2UnNhRKW8VFgn9PooLEDXfDc7rhGDsBfgGcm0sA0kCWnDA7rLSGUEkupQSpdlkBGqBGlHaPHf0BIfZZwZGL2hqJh6zM-Y33QrCoqGCnT68-x-q6t7bCm2oWvzafXawm0Q-Zj9lB8oscy98csefJ7Wx8X08f7x7GV9N6LZTe1MpyCrI1gXthULUpJp2SCgpQq4as4aCDCCa1IkijUqDWEwzAgzaWcMTOtrtrnxu_SJ1fNvPs1t38w3ffDqxFQtB973zbyz1avsTOhdXqPTvgbnjI_XsIfwBdBVAA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Phase Based 3D Texture Features</title><source>Springer Books</source><creator>Fehr, Janis ; Burkhardt, Hans</creator><contributor>Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</contributor><creatorcontrib>Fehr, Janis ; Burkhardt, Hans ; Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</creatorcontrib><description>In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction.
The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540444122</identifier><identifier>ISBN: 9783540444121</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540444145</identifier><identifier>EISBN: 3540444149</identifier><identifier>DOI: 10.1007/11861898_27</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Harmonic Band ; Harmonic Domain ; Pattern recognition. Digital image processing. Computational geometry ; Rotational Invariant Feature ; Simultaneous Segmentation ; Spherical Harmonic Domain</subject><ispartof>Lecture notes in computer science, 2006, p.263-272</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11861898_27$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11861898_27$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19938316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schäfer, Ralf</contributor><contributor>Franke, Katrin</contributor><contributor>Nickolay, Bertram</contributor><contributor>Müller, Klaus-Robert</contributor><creatorcontrib>Fehr, Janis</creatorcontrib><creatorcontrib>Burkhardt, Hans</creatorcontrib><title>Phase Based 3D Texture Features</title><title>Lecture notes in computer science</title><description>In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction.
The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Harmonic Band</subject><subject>Harmonic Domain</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Rotational Invariant Feature</subject><subject>Simultaneous Segmentation</subject><subject>Spherical Harmonic Domain</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540444122</isbn><isbn>9783540444121</isbn><isbn>9783540444145</isbn><isbn>3540444149</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkD1PwzAYhM2XRCiZ-AFkYWAI-PXrj9cjFApIlWAos2UnNhRKW8VFgn9PooLEDXfDc7rhGDsBfgGcm0sA0kCWnDA7rLSGUEkupQSpdlkBGqBGlHaPHf0BIfZZwZGL2hqJh6zM-Y33QrCoqGCnT68-x-q6t7bCm2oWvzafXawm0Q-Zj9lB8oscy98csefJ7Wx8X08f7x7GV9N6LZTe1MpyCrI1gXthULUpJp2SCgpQq4as4aCDCCa1IkijUqDWEwzAgzaWcMTOtrtrnxu_SJ1fNvPs1t38w3ffDqxFQtB973zbyz1avsTOhdXqPTvgbnjI_XsIfwBdBVAA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Fehr, Janis</creator><creator>Burkhardt, Hans</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Phase Based 3D Texture Features</title><author>Fehr, Janis ; Burkhardt, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-5908b4d7b0a2735dfef6ff5b51365c897016b2b7fd2b475fb8da81c897a167983</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Harmonic Band</topic><topic>Harmonic Domain</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Rotational Invariant Feature</topic><topic>Simultaneous Segmentation</topic><topic>Spherical Harmonic Domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehr, Janis</creatorcontrib><creatorcontrib>Burkhardt, Hans</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fehr, Janis</au><au>Burkhardt, Hans</au><au>Schäfer, Ralf</au><au>Franke, Katrin</au><au>Nickolay, Bertram</au><au>Müller, Klaus-Robert</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Phase Based 3D Texture Features</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>263</spage><epage>272</epage><pages>263-272</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540444122</isbn><isbn>9783540444121</isbn><eisbn>9783540444145</eisbn><eisbn>3540444149</eisbn><abstract>In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction.
The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11861898_27</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.263-272 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19938316 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Harmonic Band Harmonic Domain Pattern recognition. Digital image processing. Computational geometry Rotational Invariant Feature Simultaneous Segmentation Spherical Harmonic Domain |
title | Phase Based 3D Texture Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Phase%20Based%203D%20Texture%20Features&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Fehr,%20Janis&rft.date=2006&rft.spage=263&rft.epage=272&rft.pages=263-272&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540444122&rft.isbn_list=9783540444121&rft_id=info:doi/10.1007/11861898_27&rft_dat=%3Cpascalfrancis_sprin%3E19938316%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540444145&rft.eisbn_list=3540444149&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |