Phase Based 3D Texture Features

In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fehr, Janis, Burkhardt, Hans
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue
container_start_page 263
container_title
container_volume
creator Fehr, Janis
Burkhardt, Hans
description In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction. The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope.
doi_str_mv 10.1007/11861898_27
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-5908b4d7b0a2735dfef6ff5b51365c897016b2b7fd2b475fb8da81c897a167983</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRCiZ-AFkYWAI-PXrj9cjFApIlWAos2UnNhRKW8VFgn9PooLEDXfDc7rhGDsBfgGcm0sA0kCWnDA7rLSGUEkupQSpdlkBGqBGlHaPHf0BIfZZwZGL2hqJh6zM-Y33QrCoqGCnT68-x-q6t7bCm2oWvzafXawm0Q-Zj9lB8oscy98csefJ7Wx8X08f7x7GV9N6LZTe1MpyCrI1gXthULUpJp2SCgpQq4as4aCDCCa1IkijUqDWEwzAgzaWcMTOtrtrnxu_SJ1fNvPs1t38w3ffDqxFQtB973zbyz1avsTOhdXqPTvgbnjI_XsIfwBdBVAA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Phase Based 3D Texture Features</title><source>Springer Books</source><creator>Fehr, Janis ; Burkhardt, Hans</creator><contributor>Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</contributor><creatorcontrib>Fehr, Janis ; Burkhardt, Hans ; Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</creatorcontrib><description>In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction. The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540444122</identifier><identifier>ISBN: 9783540444121</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540444145</identifier><identifier>EISBN: 3540444149</identifier><identifier>DOI: 10.1007/11861898_27</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Harmonic Band ; Harmonic Domain ; Pattern recognition. Digital image processing. Computational geometry ; Rotational Invariant Feature ; Simultaneous Segmentation ; Spherical Harmonic Domain</subject><ispartof>Lecture notes in computer science, 2006, p.263-272</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11861898_27$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11861898_27$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19938316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schäfer, Ralf</contributor><contributor>Franke, Katrin</contributor><contributor>Nickolay, Bertram</contributor><contributor>Müller, Klaus-Robert</contributor><creatorcontrib>Fehr, Janis</creatorcontrib><creatorcontrib>Burkhardt, Hans</creatorcontrib><title>Phase Based 3D Texture Features</title><title>Lecture notes in computer science</title><description>In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction. The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Harmonic Band</subject><subject>Harmonic Domain</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Rotational Invariant Feature</subject><subject>Simultaneous Segmentation</subject><subject>Spherical Harmonic Domain</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540444122</isbn><isbn>9783540444121</isbn><isbn>9783540444145</isbn><isbn>3540444149</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkD1PwzAYhM2XRCiZ-AFkYWAI-PXrj9cjFApIlWAos2UnNhRKW8VFgn9PooLEDXfDc7rhGDsBfgGcm0sA0kCWnDA7rLSGUEkupQSpdlkBGqBGlHaPHf0BIfZZwZGL2hqJh6zM-Y33QrCoqGCnT68-x-q6t7bCm2oWvzafXawm0Q-Zj9lB8oscy98csefJ7Wx8X08f7x7GV9N6LZTe1MpyCrI1gXthULUpJp2SCgpQq4as4aCDCCa1IkijUqDWEwzAgzaWcMTOtrtrnxu_SJ1fNvPs1t38w3ffDqxFQtB973zbyz1avsTOhdXqPTvgbnjI_XsIfwBdBVAA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Fehr, Janis</creator><creator>Burkhardt, Hans</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Phase Based 3D Texture Features</title><author>Fehr, Janis ; Burkhardt, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-5908b4d7b0a2735dfef6ff5b51365c897016b2b7fd2b475fb8da81c897a167983</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Harmonic Band</topic><topic>Harmonic Domain</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Rotational Invariant Feature</topic><topic>Simultaneous Segmentation</topic><topic>Spherical Harmonic Domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehr, Janis</creatorcontrib><creatorcontrib>Burkhardt, Hans</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fehr, Janis</au><au>Burkhardt, Hans</au><au>Schäfer, Ralf</au><au>Franke, Katrin</au><au>Nickolay, Bertram</au><au>Müller, Klaus-Robert</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Phase Based 3D Texture Features</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>263</spage><epage>272</epage><pages>263-272</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540444122</isbn><isbn>9783540444121</isbn><eisbn>9783540444145</eisbn><eisbn>3540444149</eisbn><abstract>In this paper, we present a novel method for the voxel-wise extraction of rotation and gray-scale invariant features. These features are used for simultaneous segmentation and classification of anisotropic textured objects in 3D volume data. The proposed new class of phase based voxel-wise features achieves two major properties which can not be achieved by the previously known Haar-Integral based gray-scale features [1]: invariance towards non-linear gray-scale changes and a easy to handle data driven feature selection. In addition, the phase based features are specialized to encode 3D textures, while texture and shape information interfere in the Haar-Integral approach. Analog to the Haar-Integral features, the phase based approach uses convolution methods in the spherical harmonic domain in order to achieve a fast feature extraction. The proposed features were evaluated and compared to existing methods on a database of volumetric data sets containing cell nuclei recorded in tissue by use of a 3D laser scanning microscope.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11861898_27</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.263-272
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19938316
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Harmonic Band
Harmonic Domain
Pattern recognition. Digital image processing. Computational geometry
Rotational Invariant Feature
Simultaneous Segmentation
Spherical Harmonic Domain
title Phase Based 3D Texture Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Phase%20Based%203D%20Texture%20Features&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Fehr,%20Janis&rft.date=2006&rft.spage=263&rft.epage=272&rft.pages=263-272&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540444122&rft.isbn_list=9783540444121&rft_id=info:doi/10.1007/11861898_27&rft_dat=%3Cpascalfrancis_sprin%3E19938316%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540444145&rft.eisbn_list=3540444149&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true