Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle

This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leibe, Bastian, Cornelis, Nico, Cornelis, Kurt, Van Gool, Luc
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue
container_start_page 192
container_title
container_volume
creator Leibe, Bastian
Cornelis, Nico
Cornelis, Kurt
Van Gool, Luc
description This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario.
doi_str_mv 10.1007/11861898_20
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938309</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-63000d0e2e1fb16c337d81c4f329fea86b01a4988a4d52eb1f07f3e617f54bbc3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ8GadxD6iikelIiQoXCPHsYMhdSo7VOq_J21BYi-r3fk0Gg0hF8CugbHiBkDkIKQoU3ZAJrIQmHHGOQeeHZIR5AAJIpdH5OxPSNNjMmLI0kQWHE_JJMZPNgyCxEyMiJn53jRB9c439MXorvGud52nyte728c-fOvdy3aBTvfA2tBFUNY6TV-18YbeetVuoovUhm5JFX3q1lvHd_PhdGvOyYlVbTST3z0mb_d3i-ljMn9-mE1v58kqBdknOQ7JamZSA7aCXCMWtQDNLabSGiXyioHiUgjF6yw1FVhWWDQ5FDbjVaVxTC73visVtWptUF67WK6CW6qwKUFKFMjkwF3tuThIvjGhrLruK5bAym3P5b-e8Qej8msp</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</title><source>Springer Books</source><creator>Leibe, Bastian ; Cornelis, Nico ; Cornelis, Kurt ; Van Gool, Luc</creator><contributor>Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</contributor><creatorcontrib>Leibe, Bastian ; Cornelis, Nico ; Cornelis, Kurt ; Van Gool, Luc ; Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</creatorcontrib><description>This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540444122</identifier><identifier>ISBN: 9783540444121</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540444145</identifier><identifier>EISBN: 3540444149</identifier><identifier>DOI: 10.1007/11861898_20</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Object Detection ; Pattern recognition. Digital image processing. Computational geometry ; Reconstruction Module ; Scene Analysis ; Scene Geometry ; Stereo Pair</subject><ispartof>Lecture notes in computer science, 2006, p.192-201</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11861898_20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11861898_20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4037,4038,27907,38237,41424,42493</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19938309$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schäfer, Ralf</contributor><contributor>Franke, Katrin</contributor><contributor>Nickolay, Bertram</contributor><contributor>Müller, Klaus-Robert</contributor><creatorcontrib>Leibe, Bastian</creatorcontrib><creatorcontrib>Cornelis, Nico</creatorcontrib><creatorcontrib>Cornelis, Kurt</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><title>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</title><title>Lecture notes in computer science</title><description>This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Object Detection</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Reconstruction Module</subject><subject>Scene Analysis</subject><subject>Scene Geometry</subject><subject>Stereo Pair</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540444122</isbn><isbn>9783540444121</isbn><isbn>9783540444145</isbn><isbn>3540444149</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ8GadxD6iikelIiQoXCPHsYMhdSo7VOq_J21BYi-r3fk0Gg0hF8CugbHiBkDkIKQoU3ZAJrIQmHHGOQeeHZIR5AAJIpdH5OxPSNNjMmLI0kQWHE_JJMZPNgyCxEyMiJn53jRB9c439MXorvGud52nyte728c-fOvdy3aBTvfA2tBFUNY6TV-18YbeetVuoovUhm5JFX3q1lvHd_PhdGvOyYlVbTST3z0mb_d3i-ljMn9-mE1v58kqBdknOQ7JamZSA7aCXCMWtQDNLabSGiXyioHiUgjF6yw1FVhWWDQ5FDbjVaVxTC73visVtWptUF67WK6CW6qwKUFKFMjkwF3tuThIvjGhrLruK5bAym3P5b-e8Qej8msp</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Leibe, Bastian</creator><creator>Cornelis, Nico</creator><creator>Cornelis, Kurt</creator><creator>Van Gool, Luc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</title><author>Leibe, Bastian ; Cornelis, Nico ; Cornelis, Kurt ; Van Gool, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-63000d0e2e1fb16c337d81c4f329fea86b01a4988a4d52eb1f07f3e617f54bbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Object Detection</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Reconstruction Module</topic><topic>Scene Analysis</topic><topic>Scene Geometry</topic><topic>Stereo Pair</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leibe, Bastian</creatorcontrib><creatorcontrib>Cornelis, Nico</creatorcontrib><creatorcontrib>Cornelis, Kurt</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibe, Bastian</au><au>Cornelis, Nico</au><au>Cornelis, Kurt</au><au>Van Gool, Luc</au><au>Schäfer, Ralf</au><au>Franke, Katrin</au><au>Nickolay, Bertram</au><au>Müller, Klaus-Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540444122</isbn><isbn>9783540444121</isbn><eisbn>9783540444145</eisbn><eisbn>3540444149</eisbn><abstract>This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11861898_20</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.192-201
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19938309
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Object Detection
Pattern recognition. Digital image processing. Computational geometry
Reconstruction Module
Scene Analysis
Scene Geometry
Stereo Pair
title Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integrating%20Recognition%20and%20Reconstruction%20for%20Cognitive%20Traffic%20Scene%20Analysis%20from%20a%20Moving%20Vehicle&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Leibe,%20Bastian&rft.date=2006&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540444122&rft.isbn_list=9783540444121&rft_id=info:doi/10.1007/11861898_20&rft_dat=%3Cpascalfrancis_sprin%3E19938309%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540444145&rft.eisbn_list=3540444149&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true