Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle
This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | |
container_start_page | 192 |
container_title | |
container_volume | |
creator | Leibe, Bastian Cornelis, Nico Cornelis, Kurt Van Gool, Luc |
description | This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario. |
doi_str_mv | 10.1007/11861898_20 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938309</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-63000d0e2e1fb16c337d81c4f329fea86b01a4988a4d52eb1f07f3e617f54bbc3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ8GadxD6iikelIiQoXCPHsYMhdSo7VOq_J21BYi-r3fk0Gg0hF8CugbHiBkDkIKQoU3ZAJrIQmHHGOQeeHZIR5AAJIpdH5OxPSNNjMmLI0kQWHE_JJMZPNgyCxEyMiJn53jRB9c439MXorvGud52nyte728c-fOvdy3aBTvfA2tBFUNY6TV-18YbeetVuoovUhm5JFX3q1lvHd_PhdGvOyYlVbTST3z0mb_d3i-ljMn9-mE1v58kqBdknOQ7JamZSA7aCXCMWtQDNLabSGiXyioHiUgjF6yw1FVhWWDQ5FDbjVaVxTC73visVtWptUF67WK6CW6qwKUFKFMjkwF3tuThIvjGhrLruK5bAym3P5b-e8Qej8msp</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</title><source>Springer Books</source><creator>Leibe, Bastian ; Cornelis, Nico ; Cornelis, Kurt ; Van Gool, Luc</creator><contributor>Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</contributor><creatorcontrib>Leibe, Bastian ; Cornelis, Nico ; Cornelis, Kurt ; Van Gool, Luc ; Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</creatorcontrib><description>This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540444122</identifier><identifier>ISBN: 9783540444121</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540444145</identifier><identifier>EISBN: 3540444149</identifier><identifier>DOI: 10.1007/11861898_20</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Object Detection ; Pattern recognition. Digital image processing. Computational geometry ; Reconstruction Module ; Scene Analysis ; Scene Geometry ; Stereo Pair</subject><ispartof>Lecture notes in computer science, 2006, p.192-201</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11861898_20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11861898_20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4037,4038,27907,38237,41424,42493</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19938309$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schäfer, Ralf</contributor><contributor>Franke, Katrin</contributor><contributor>Nickolay, Bertram</contributor><contributor>Müller, Klaus-Robert</contributor><creatorcontrib>Leibe, Bastian</creatorcontrib><creatorcontrib>Cornelis, Nico</creatorcontrib><creatorcontrib>Cornelis, Kurt</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><title>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</title><title>Lecture notes in computer science</title><description>This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Object Detection</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Reconstruction Module</subject><subject>Scene Analysis</subject><subject>Scene Geometry</subject><subject>Stereo Pair</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540444122</isbn><isbn>9783540444121</isbn><isbn>9783540444145</isbn><isbn>3540444149</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtPwzAQhM1LopSe-AO-cOAQ8GadxD6iikelIiQoXCPHsYMhdSo7VOq_J21BYi-r3fk0Gg0hF8CugbHiBkDkIKQoU3ZAJrIQmHHGOQeeHZIR5AAJIpdH5OxPSNNjMmLI0kQWHE_JJMZPNgyCxEyMiJn53jRB9c439MXorvGud52nyte728c-fOvdy3aBTvfA2tBFUNY6TV-18YbeetVuoovUhm5JFX3q1lvHd_PhdGvOyYlVbTST3z0mb_d3i-ljMn9-mE1v58kqBdknOQ7JamZSA7aCXCMWtQDNLabSGiXyioHiUgjF6yw1FVhWWDQ5FDbjVaVxTC73visVtWptUF67WK6CW6qwKUFKFMjkwF3tuThIvjGhrLruK5bAym3P5b-e8Qej8msp</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Leibe, Bastian</creator><creator>Cornelis, Nico</creator><creator>Cornelis, Kurt</creator><creator>Van Gool, Luc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</title><author>Leibe, Bastian ; Cornelis, Nico ; Cornelis, Kurt ; Van Gool, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-63000d0e2e1fb16c337d81c4f329fea86b01a4988a4d52eb1f07f3e617f54bbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Object Detection</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Reconstruction Module</topic><topic>Scene Analysis</topic><topic>Scene Geometry</topic><topic>Stereo Pair</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leibe, Bastian</creatorcontrib><creatorcontrib>Cornelis, Nico</creatorcontrib><creatorcontrib>Cornelis, Kurt</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibe, Bastian</au><au>Cornelis, Nico</au><au>Cornelis, Kurt</au><au>Van Gool, Luc</au><au>Schäfer, Ralf</au><au>Franke, Katrin</au><au>Nickolay, Bertram</au><au>Müller, Klaus-Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540444122</isbn><isbn>9783540444121</isbn><eisbn>9783540444145</eisbn><eisbn>3540444149</eisbn><abstract>This paper presents a practical system for vision-based traffic scene analysis from a moving vehicle based on a cognitive feedback loop which integrates real-time geometry estimation with appearance-based object detection. We demonstrate how those two components can benefit from each other’s continuous input and how the transferred knowledge can be used to improve scene analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but is instead addressed by the repeated interaction and consistency checks between different levels and modes of visual processing. As our results show, the proposed tight integration significantly increases recognition performance, as well as overall system robustness. In addition, it enables the construction of novel capabilities such as the accurate 3D estimation of object locations and orientations and their temporal integration in a world coordinate frame. The system is evaluated on a challenging real-world car detection task in an urban scenario.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11861898_20</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.192-201 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19938309 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Object Detection Pattern recognition. Digital image processing. Computational geometry Reconstruction Module Scene Analysis Scene Geometry Stereo Pair |
title | Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integrating%20Recognition%20and%20Reconstruction%20for%20Cognitive%20Traffic%20Scene%20Analysis%20from%20a%20Moving%20Vehicle&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Leibe,%20Bastian&rft.date=2006&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540444122&rft.isbn_list=9783540444121&rft_id=info:doi/10.1007/11861898_20&rft_dat=%3Cpascalfrancis_sprin%3E19938309%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540444145&rft.eisbn_list=3540444149&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |