Diffusion-Like Reconstruction Schemes from Linear Data Models

In this paper we extend anisotropic diffusion with a diffusion tensor to be applicable to data that is well modeled by linear models. We focus on its variational theory, and investigate simple discretizations and their performance on synthetic data fulfilling the underlying linear models. To this en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Scharr, Hanno
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue
container_start_page 51
container_title
container_volume
creator Scharr, Hanno
description In this paper we extend anisotropic diffusion with a diffusion tensor to be applicable to data that is well modeled by linear models. We focus on its variational theory, and investigate simple discretizations and their performance on synthetic data fulfilling the underlying linear models. To this end, we first show that standard anisotropic diffusion with a diffusion tensor is directly linked to a data model describing single orientations. In the case of spatio-temporal data this model is the well known brightness constancy constraint equation often used to estimate optical flow. Using this observation, we construct extended anisotropic diffusion schemes that are based on more general linear models. These schemes can be thought of as higher order anisotropic diffusion. As an example we construct schemes for noise reduction in the case of two orientations in 2d images. By comparison to the denoising result via standard single orientation anisotropic diffusion, we demonstrate the better suited behavior of the novel schemes for double orientation data.
doi_str_mv 10.1007/11861898_6
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938295</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-d1031ae377250ab8597daaa2ca02a903832b5337c9623ccd6aed3bd6fc85a1f3</originalsourceid><addsrcrecordid>eNpFUD1PwzAUNF8SpXThF2RBYgn4-dmxPTCgli8pCAm6Wy-ODYE2qeJ04N8TVBC3nHR3upOOsTPgl8C5vgIwBRhrXLHHZlYbVJJLKUGqfTaBAiBHlPaAnfwZQhyyCUcucqslHrNZSh98BIJFZSbsetHEuE1N1-Zl8xmyl-C7Ng391g-jlr3697AOKYt9t87Kpg3UZwsaKHvq6rBKp-wo0iqF2S9P2fLudjl_yMvn-8f5TZlvBJghr2Hco4BaC8WpMsrqmoiEJy7IcjQoKoWovS0Eel8XFGqs6iJ6owgiTtn5rnZDydMq9tT6JrlN36yp_3JgLRph1Zi72OXSaLVvoXdV130mB9z9vOf-38NvMl9bkQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Diffusion-Like Reconstruction Schemes from Linear Data Models</title><source>Springer Books</source><creator>Scharr, Hanno</creator><contributor>Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</contributor><creatorcontrib>Scharr, Hanno ; Schäfer, Ralf ; Franke, Katrin ; Nickolay, Bertram ; Müller, Klaus-Robert</creatorcontrib><description>In this paper we extend anisotropic diffusion with a diffusion tensor to be applicable to data that is well modeled by linear models. We focus on its variational theory, and investigate simple discretizations and their performance on synthetic data fulfilling the underlying linear models. To this end, we first show that standard anisotropic diffusion with a diffusion tensor is directly linked to a data model describing single orientations. In the case of spatio-temporal data this model is the well known brightness constancy constraint equation often used to estimate optical flow. Using this observation, we construct extended anisotropic diffusion schemes that are based on more general linear models. These schemes can be thought of as higher order anisotropic diffusion. As an example we construct schemes for noise reduction in the case of two orientations in 2d images. By comparison to the denoising result via standard single orientation anisotropic diffusion, we demonstrate the better suited behavior of the novel schemes for double orientation data.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540444122</identifier><identifier>ISBN: 9783540444121</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540444145</identifier><identifier>EISBN: 3540444149</identifier><identifier>DOI: 10.1007/11861898_6</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropic Diffusion ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Orientation Estimation ; Reconstruction Scheme ; Single Orientation ; Structure Tensor</subject><ispartof>Lecture notes in computer science, 2006, p.51-60</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11861898_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11861898_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19938295$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schäfer, Ralf</contributor><contributor>Franke, Katrin</contributor><contributor>Nickolay, Bertram</contributor><contributor>Müller, Klaus-Robert</contributor><creatorcontrib>Scharr, Hanno</creatorcontrib><title>Diffusion-Like Reconstruction Schemes from Linear Data Models</title><title>Lecture notes in computer science</title><description>In this paper we extend anisotropic diffusion with a diffusion tensor to be applicable to data that is well modeled by linear models. We focus on its variational theory, and investigate simple discretizations and their performance on synthetic data fulfilling the underlying linear models. To this end, we first show that standard anisotropic diffusion with a diffusion tensor is directly linked to a data model describing single orientations. In the case of spatio-temporal data this model is the well known brightness constancy constraint equation often used to estimate optical flow. Using this observation, we construct extended anisotropic diffusion schemes that are based on more general linear models. These schemes can be thought of as higher order anisotropic diffusion. As an example we construct schemes for noise reduction in the case of two orientations in 2d images. By comparison to the denoising result via standard single orientation anisotropic diffusion, we demonstrate the better suited behavior of the novel schemes for double orientation data.</description><subject>Anisotropic Diffusion</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Orientation Estimation</subject><subject>Reconstruction Scheme</subject><subject>Single Orientation</subject><subject>Structure Tensor</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540444122</isbn><isbn>9783540444121</isbn><isbn>9783540444145</isbn><isbn>3540444149</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFUD1PwzAUNF8SpXThF2RBYgn4-dmxPTCgli8pCAm6Wy-ODYE2qeJ04N8TVBC3nHR3upOOsTPgl8C5vgIwBRhrXLHHZlYbVJJLKUGqfTaBAiBHlPaAnfwZQhyyCUcucqslHrNZSh98BIJFZSbsetHEuE1N1-Zl8xmyl-C7Ng391g-jlr3697AOKYt9t87Kpg3UZwsaKHvq6rBKp-wo0iqF2S9P2fLudjl_yMvn-8f5TZlvBJghr2Hco4BaC8WpMsrqmoiEJy7IcjQoKoWovS0Eel8XFGqs6iJ6owgiTtn5rnZDydMq9tT6JrlN36yp_3JgLRph1Zi72OXSaLVvoXdV130mB9z9vOf-38NvMl9bkQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Scharr, Hanno</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Diffusion-Like Reconstruction Schemes from Linear Data Models</title><author>Scharr, Hanno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-d1031ae377250ab8597daaa2ca02a903832b5337c9623ccd6aed3bd6fc85a1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropic Diffusion</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Orientation Estimation</topic><topic>Reconstruction Scheme</topic><topic>Single Orientation</topic><topic>Structure Tensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scharr, Hanno</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scharr, Hanno</au><au>Schäfer, Ralf</au><au>Franke, Katrin</au><au>Nickolay, Bertram</au><au>Müller, Klaus-Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Diffusion-Like Reconstruction Schemes from Linear Data Models</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>51</spage><epage>60</epage><pages>51-60</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540444122</isbn><isbn>9783540444121</isbn><eisbn>9783540444145</eisbn><eisbn>3540444149</eisbn><abstract>In this paper we extend anisotropic diffusion with a diffusion tensor to be applicable to data that is well modeled by linear models. We focus on its variational theory, and investigate simple discretizations and their performance on synthetic data fulfilling the underlying linear models. To this end, we first show that standard anisotropic diffusion with a diffusion tensor is directly linked to a data model describing single orientations. In the case of spatio-temporal data this model is the well known brightness constancy constraint equation often used to estimate optical flow. Using this observation, we construct extended anisotropic diffusion schemes that are based on more general linear models. These schemes can be thought of as higher order anisotropic diffusion. As an example we construct schemes for noise reduction in the case of two orientations in 2d images. By comparison to the denoising result via standard single orientation anisotropic diffusion, we demonstrate the better suited behavior of the novel schemes for double orientation data.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11861898_6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.51-60
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19938295
source Springer Books
subjects Anisotropic Diffusion
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Orientation Estimation
Reconstruction Scheme
Single Orientation
Structure Tensor
title Diffusion-Like Reconstruction Schemes from Linear Data Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Diffusion-Like%20Reconstruction%20Schemes%20from%20Linear%20Data%20Models&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Scharr,%20Hanno&rft.date=2006&rft.spage=51&rft.epage=60&rft.pages=51-60&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540444122&rft.isbn_list=9783540444121&rft_id=info:doi/10.1007/11861898_6&rft_dat=%3Cpascalfrancis_sprin%3E19938295%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540444145&rft.eisbn_list=3540444149&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true