A Combinatorial Approach to Collapsing Words
Given a word w over a finite alphabet Σ and a finite deterministic automaton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{docu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | |
container_start_page | 256 |
container_title | |
container_volume | |
creator | Cherubini, A. Gawrychowski, P. Kisielewicz, A. Piochi, B. |
description | Given a word w over a finite alphabet Σ and a finite deterministic automaton \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal A} = {\langle} Q,\Sigma,\delta {\rangle}$\end{document}, the inequality |δ(Q,w)| ≤|Q|–n means that under the natural action of the word w the image of the state set Q is reduced by at least n states. The word w is n-collapsing if this inequality holds for any deterministic finite automaton that satisfies such an inequality for at least one word. In this paper we present a new approach to the topic of collapsing words, and announce a few results we have obtained using this new approach. In particular, we present a direct proof of the fact that the language of n-collapsing words is recursive. |
doi_str_mv | 10.1007/11821069_23 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938198</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-983b10bf058fe5a7fa1763b1bb154790fcbbf60c047f5f131a1218721822d1a33</originalsourceid><addsrcrecordid>eNpNkEtLxEAQhMcXuBs9-Qdy8SAY7Z5OMpnjEnzBghdFb0NPNrNGs5kwsxf__UZW0ENRUF_RDSXEBcINAqhbxEoilNpIOhBzKnIgpTS9H4oZlogZUa6P_gDSsZgBgcy0yulUzGP8BACptJyJ60Va-43tBt760HGfLsYxeG4-0q2fSN_zGLthnb75sIpn4sRxH9vzX0_E6_3dS_2YLZ8fnurFMhtlUW4zXZFFsA6KyrUFK8eoyimyFotcaXCNta6EBnLlCoeEjBIrNUnKFTJRIi73d0eODfcu8NB00Yyh23D4Nqg1VTh9ScTVvhcnNKzbYKz3X9EgmJ-hzL-haAdcYlPT</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Combinatorial Approach to Collapsing Words</title><source>Springer Books</source><creator>Cherubini, A. ; Gawrychowski, P. ; Kisielewicz, A. ; Piochi, B.</creator><contributor>Urzyczyn, Paweł ; Královič, Rastislav</contributor><creatorcontrib>Cherubini, A. ; Gawrychowski, P. ; Kisielewicz, A. ; Piochi, B. ; Urzyczyn, Paweł ; Královič, Rastislav</creatorcontrib><description>Given a word w over a finite alphabet Σ and a finite deterministic automaton \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal A} = {\langle} Q,\Sigma,\delta {\rangle}$\end{document}, the inequality |δ(Q,w)| ≤|Q|–n means that under the natural action of the word w the image of the state set Q is reduced by at least n states. The word w is n-collapsing if this inequality holds for any deterministic finite automaton that satisfies such an inequality for at least one word. In this paper we present a new approach to the topic of collapsing words, and announce a few results we have obtained using this new approach. In particular, we present a direct proof of the fact that the language of n-collapsing words is recursive.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540377913</identifier><identifier>ISBN: 9783540377917</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354037793X</identifier><identifier>EISBN: 9783540377931</identifier><identifier>DOI: 10.1007/11821069_23</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2006, p.256-266</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11821069_23$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11821069_23$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19938198$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Urzyczyn, Paweł</contributor><contributor>Královič, Rastislav</contributor><creatorcontrib>Cherubini, A.</creatorcontrib><creatorcontrib>Gawrychowski, P.</creatorcontrib><creatorcontrib>Kisielewicz, A.</creatorcontrib><creatorcontrib>Piochi, B.</creatorcontrib><title>A Combinatorial Approach to Collapsing Words</title><title>Lecture notes in computer science</title><description>Given a word w over a finite alphabet Σ and a finite deterministic automaton \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal A} = {\langle} Q,\Sigma,\delta {\rangle}$\end{document}, the inequality |δ(Q,w)| ≤|Q|–n means that under the natural action of the word w the image of the state set Q is reduced by at least n states. The word w is n-collapsing if this inequality holds for any deterministic finite automaton that satisfies such an inequality for at least one word. In this paper we present a new approach to the topic of collapsing words, and announce a few results we have obtained using this new approach. In particular, we present a direct proof of the fact that the language of n-collapsing words is recursive.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540377913</isbn><isbn>9783540377917</isbn><isbn>354037793X</isbn><isbn>9783540377931</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkEtLxEAQhMcXuBs9-Qdy8SAY7Z5OMpnjEnzBghdFb0NPNrNGs5kwsxf__UZW0ENRUF_RDSXEBcINAqhbxEoilNpIOhBzKnIgpTS9H4oZlogZUa6P_gDSsZgBgcy0yulUzGP8BACptJyJ60Va-43tBt760HGfLsYxeG4-0q2fSN_zGLthnb75sIpn4sRxH9vzX0_E6_3dS_2YLZ8fnurFMhtlUW4zXZFFsA6KyrUFK8eoyimyFotcaXCNta6EBnLlCoeEjBIrNUnKFTJRIi73d0eODfcu8NB00Yyh23D4Nqg1VTh9ScTVvhcnNKzbYKz3X9EgmJ-hzL-haAdcYlPT</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Cherubini, A.</creator><creator>Gawrychowski, P.</creator><creator>Kisielewicz, A.</creator><creator>Piochi, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Combinatorial Approach to Collapsing Words</title><author>Cherubini, A. ; Gawrychowski, P. ; Kisielewicz, A. ; Piochi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-983b10bf058fe5a7fa1763b1bb154790fcbbf60c047f5f131a1218721822d1a33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherubini, A.</creatorcontrib><creatorcontrib>Gawrychowski, P.</creatorcontrib><creatorcontrib>Kisielewicz, A.</creatorcontrib><creatorcontrib>Piochi, B.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherubini, A.</au><au>Gawrychowski, P.</au><au>Kisielewicz, A.</au><au>Piochi, B.</au><au>Urzyczyn, Paweł</au><au>Královič, Rastislav</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Combinatorial Approach to Collapsing Words</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>256</spage><epage>266</epage><pages>256-266</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540377913</isbn><isbn>9783540377917</isbn><eisbn>354037793X</eisbn><eisbn>9783540377931</eisbn><abstract>Given a word w over a finite alphabet Σ and a finite deterministic automaton \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal A} = {\langle} Q,\Sigma,\delta {\rangle}$\end{document}, the inequality |δ(Q,w)| ≤|Q|–n means that under the natural action of the word w the image of the state set Q is reduced by at least n states. The word w is n-collapsing if this inequality holds for any deterministic finite automaton that satisfies such an inequality for at least one word. In this paper we present a new approach to the topic of collapsing words, and announce a few results we have obtained using this new approach. In particular, we present a direct proof of the fact that the language of n-collapsing words is recursive.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11821069_23</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.256-266 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19938198 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Theoretical computing |
title | A Combinatorial Approach to Collapsing Words |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Combinatorial%20Approach%20to%20Collapsing%20Words&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Cherubini,%20A.&rft.date=2006&rft.spage=256&rft.epage=266&rft.pages=256-266&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540377913&rft.isbn_list=9783540377917&rft_id=info:doi/10.1007/11821069_23&rft_dat=%3Cpascalfrancis_sprin%3E19938198%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354037793X&rft.eisbn_list=9783540377931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |