Country Corruption Analysis with Self Organizing Maps and Support Vector Machines
During recent years, the empirical research on corruption has grown considerably. Possible links between government corruption and terrorism have attracted an increasing interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | |
container_volume | |
creator | Huysmans, Johan Martens, David Baesens, Bart Vanthienen, Jan Van Gestel, Tony |
description | During recent years, the empirical research on corruption has grown considerably. Possible links between government corruption and terrorism have attracted an increasing interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only few studies tackle this research field from a data mining point of view. In this paper, we apply data mining techniques onto a cross-country database linking macro-economical variables to perceived levels of corruption. In the first part, self organizing maps are applied to study the interconnections between these variables. Afterwards, support vector machines are trained on part of the data and used to forecast corruption for other countries. Large deviations for specific countries between these models’ predictions and the actual values can prove useful for further research. Finally, projection of the forecasts onto a self organizing map allows a detailed comparison between the different models’ behavior. |
doi_str_mv | 10.1007/11734628_13 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19938044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19938044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-9c10b7a0819581887f7267097d9d1d247052fef03bc651a07f48093f3d697153</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhccXWGpX_oHZuHARvTc3mceyFF9QKdLiNkyTTDsaJ2EmReqvN1IXejYHznc4i8PYJcINAshbREmZSFWBdMQmWirKMyAikdIxG6FATIgyffKPoThlIyBIEy0zOmeTGN9gEKEiQSP2Mmt3vg97PmtD2HW9az2fetPso4v80_VbvqwbyxdhY7z7cn7Dn00XufEVX-66rg09f63Lvg1DXm6dr-MFO7OmifXk18dsdX-3mj0m88XD02w6T8pUqz7RJcJaGlCoc4VKSStTIUHLSldYpZmEPLW1BVqXIkcD0mYKNFmqhJaY05hdHWY7E0vT2GB86WLRBfdhwr5ArUlBlg2960MvDshv6lCs2_Y9FgjFz6vFn1fpGwr7Ypg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Country Corruption Analysis with Self Organizing Maps and Support Vector Machines</title><source>Springer Books</source><creator>Huysmans, Johan ; Martens, David ; Baesens, Bart ; Vanthienen, Jan ; Van Gestel, Tony</creator><contributor>Chen, Hsinchun ; Zeng, Daniel ; Wang, Fei-Yue ; Chang, Kuiyu ; Yang, Christopher C. ; Chau, Michael</contributor><creatorcontrib>Huysmans, Johan ; Martens, David ; Baesens, Bart ; Vanthienen, Jan ; Van Gestel, Tony ; Chen, Hsinchun ; Zeng, Daniel ; Wang, Fei-Yue ; Chang, Kuiyu ; Yang, Christopher C. ; Chau, Michael</creatorcontrib><description>During recent years, the empirical research on corruption has grown considerably. Possible links between government corruption and terrorism have attracted an increasing interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only few studies tackle this research field from a data mining point of view. In this paper, we apply data mining techniques onto a cross-country database linking macro-economical variables to perceived levels of corruption. In the first part, self organizing maps are applied to study the interconnections between these variables. Afterwards, support vector machines are trained on part of the data and used to forecast corruption for other countries. Large deviations for specific countries between these models’ predictions and the actual values can prove useful for further research. Finally, projection of the forecasts onto a self organizing map allows a detailed comparison between the different models’ behavior.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540333616</identifier><identifier>ISBN: 3540333614</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540333623</identifier><identifier>EISBN: 3540333622</identifier><identifier>DOI: 10.1007/11734628_13</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Best Match Unit ; Civil Liberty ; Component Plane ; Computer science; control theory; systems ; Corruption Perception Index ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Information systems. Data bases ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; Software ; Support Vector Machine</subject><ispartof>Intelligence and Security Informatics, 2006, p.103-114</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-9c10b7a0819581887f7267097d9d1d247052fef03bc651a07f48093f3d697153</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11734628_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11734628_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19938044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Chen, Hsinchun</contributor><contributor>Zeng, Daniel</contributor><contributor>Wang, Fei-Yue</contributor><contributor>Chang, Kuiyu</contributor><contributor>Yang, Christopher C.</contributor><contributor>Chau, Michael</contributor><creatorcontrib>Huysmans, Johan</creatorcontrib><creatorcontrib>Martens, David</creatorcontrib><creatorcontrib>Baesens, Bart</creatorcontrib><creatorcontrib>Vanthienen, Jan</creatorcontrib><creatorcontrib>Van Gestel, Tony</creatorcontrib><title>Country Corruption Analysis with Self Organizing Maps and Support Vector Machines</title><title>Intelligence and Security Informatics</title><description>During recent years, the empirical research on corruption has grown considerably. Possible links between government corruption and terrorism have attracted an increasing interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only few studies tackle this research field from a data mining point of view. In this paper, we apply data mining techniques onto a cross-country database linking macro-economical variables to perceived levels of corruption. In the first part, self organizing maps are applied to study the interconnections between these variables. Afterwards, support vector machines are trained on part of the data and used to forecast corruption for other countries. Large deviations for specific countries between these models’ predictions and the actual values can prove useful for further research. Finally, projection of the forecasts onto a self organizing map allows a detailed comparison between the different models’ behavior.</description><subject>Applied sciences</subject><subject>Best Match Unit</subject><subject>Civil Liberty</subject><subject>Component Plane</subject><subject>Computer science; control theory; systems</subject><subject>Corruption Perception Index</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540333616</isbn><isbn>3540333614</isbn><isbn>9783540333623</isbn><isbn>3540333622</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkEtLw0AUhccXWGpX_oHZuHARvTc3mceyFF9QKdLiNkyTTDsaJ2EmReqvN1IXejYHznc4i8PYJcINAshbREmZSFWBdMQmWirKMyAikdIxG6FATIgyffKPoThlIyBIEy0zOmeTGN9gEKEiQSP2Mmt3vg97PmtD2HW9az2fetPso4v80_VbvqwbyxdhY7z7cn7Dn00XufEVX-66rg09f63Lvg1DXm6dr-MFO7OmifXk18dsdX-3mj0m88XD02w6T8pUqz7RJcJaGlCoc4VKSStTIUHLSldYpZmEPLW1BVqXIkcD0mYKNFmqhJaY05hdHWY7E0vT2GB86WLRBfdhwr5ArUlBlg2960MvDshv6lCs2_Y9FgjFz6vFn1fpGwr7Ypg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Huysmans, Johan</creator><creator>Martens, David</creator><creator>Baesens, Bart</creator><creator>Vanthienen, Jan</creator><creator>Van Gestel, Tony</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Country Corruption Analysis with Self Organizing Maps and Support Vector Machines</title><author>Huysmans, Johan ; Martens, David ; Baesens, Bart ; Vanthienen, Jan ; Van Gestel, Tony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-9c10b7a0819581887f7267097d9d1d247052fef03bc651a07f48093f3d697153</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Best Match Unit</topic><topic>Civil Liberty</topic><topic>Component Plane</topic><topic>Computer science; control theory; systems</topic><topic>Corruption Perception Index</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huysmans, Johan</creatorcontrib><creatorcontrib>Martens, David</creatorcontrib><creatorcontrib>Baesens, Bart</creatorcontrib><creatorcontrib>Vanthienen, Jan</creatorcontrib><creatorcontrib>Van Gestel, Tony</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huysmans, Johan</au><au>Martens, David</au><au>Baesens, Bart</au><au>Vanthienen, Jan</au><au>Van Gestel, Tony</au><au>Chen, Hsinchun</au><au>Zeng, Daniel</au><au>Wang, Fei-Yue</au><au>Chang, Kuiyu</au><au>Yang, Christopher C.</au><au>Chau, Michael</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Country Corruption Analysis with Self Organizing Maps and Support Vector Machines</atitle><btitle>Intelligence and Security Informatics</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540333616</isbn><isbn>3540333614</isbn><eisbn>9783540333623</eisbn><eisbn>3540333622</eisbn><abstract>During recent years, the empirical research on corruption has grown considerably. Possible links between government corruption and terrorism have attracted an increasing interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only few studies tackle this research field from a data mining point of view. In this paper, we apply data mining techniques onto a cross-country database linking macro-economical variables to perceived levels of corruption. In the first part, self organizing maps are applied to study the interconnections between these variables. Afterwards, support vector machines are trained on part of the data and used to forecast corruption for other countries. Large deviations for specific countries between these models’ predictions and the actual values can prove useful for further research. Finally, projection of the forecasts onto a self organizing map allows a detailed comparison between the different models’ behavior.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11734628_13</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Intelligence and Security Informatics, 2006, p.103-114 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19938044 |
source | Springer Books |
subjects | Applied sciences Best Match Unit Civil Liberty Component Plane Computer science control theory systems Corruption Perception Index Data processing. List processing. Character string processing Exact sciences and technology Information systems. Data bases Memory and file management (including protection and security) Memory organisation. Data processing Software Support Vector Machine |
title | Country Corruption Analysis with Self Organizing Maps and Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Country%20Corruption%20Analysis%20with%20Self%20Organizing%20Maps%20and%20Support%20Vector%20Machines&rft.btitle=Intelligence%20and%20Security%20Informatics&rft.au=Huysmans,%20Johan&rft.date=2006&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540333616&rft.isbn_list=3540333614&rft_id=info:doi/10.1007/11734628_13&rft_dat=%3Cpascalfrancis_sprin%3E19938044%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540333623&rft.eisbn_list=3540333622&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |