Exact Crossing Minimization

The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph into the plane. This very basic property has been studied extensively in the literature from a theoretic point of view and many bounds exist for a variety of graph classes. In this paper, we present th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buchheim, Christoph, Ebner, Dietmar, Jünger, Michael, Klau, Gunnar W., Mutzel, Petra, Weiskircher, René
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 37
container_title
container_volume
creator Buchheim, Christoph
Ebner, Dietmar
Jünger, Michael
Klau, Gunnar W.
Mutzel, Petra
Weiskircher, René
description The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph into the plane. This very basic property has been studied extensively in the literature from a theoretic point of view and many bounds exist for a variety of graph classes. In this paper, we present the first algorithm able to compute the crossing number of general sparse graphs of moderate size and present computational results on a popular benchmark set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.
doi_str_mv 10.1007/11618058_4
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19937711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19937711</sourcerecordid><originalsourceid>FETCH-LOGICAL-p254t-4016a11c1e2afc9ab225dfe78564ff35c36356b35df8901e2a1f8a83dbc3bbaa3</originalsourceid><addsrcrecordid>eNpFkLtOw0AQRZeXhAluaGnSINEYdjz7LJEVHlIQDdSr8cYbLSS25XUBfH0cBYnbjHTP0RSXsSvgd8C5vgdQYLg0ThyxC5SCIyil4ZhlE4ACUdgTllttDkyUUp-yjCMvC6sFnrM8pU8-BUFbbTN2vfgmP86roUsptuv5a2zjNv7SGLv2kp0F2qQm_7sz9vG4eK-ei-Xb00v1sCz6UoqxEBwUAXhoSgreUl2WchUabaQSIaD0qFCqGqfSWL63IBgyuKo91jURztjN4W9PydMmDNT6mFw_xC0NPw6sRa0BJu_24KUJtetmcHXXfSUH3O3Hcf_j4A5GTU-7</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Exact Crossing Minimization</title><source>Springer Books</source><creator>Buchheim, Christoph ; Ebner, Dietmar ; Jünger, Michael ; Klau, Gunnar W. ; Mutzel, Petra ; Weiskircher, René</creator><contributor>Nikolov, Nikola S. ; Healy, Patrick</contributor><creatorcontrib>Buchheim, Christoph ; Ebner, Dietmar ; Jünger, Michael ; Klau, Gunnar W. ; Mutzel, Petra ; Weiskircher, René ; Nikolov, Nikola S. ; Healy, Patrick</creatorcontrib><description>The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph into the plane. This very basic property has been studied extensively in the literature from a theoretic point of view and many bounds exist for a variety of graph classes. In this paper, we present the first algorithm able to compute the crossing number of general sparse graphs of moderate size and present computational results on a popular benchmark set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540314257</identifier><identifier>ISBN: 3540314253</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316671</identifier><identifier>EISBN: 9783540316671</identifier><identifier>DOI: 10.1007/11618058_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Complete Bipartite Graph ; Computer science; control theory; systems ; Dummy Node ; Edge Crossing ; Exact sciences and technology ; Information retrieval. Graph ; Integer Linear Programming Formulation ; Layout Problem ; Theoretical computing</subject><ispartof>Graph Drawing, 2006, p.37-48</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11618058_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11618058_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19937711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nikolov, Nikola S.</contributor><contributor>Healy, Patrick</contributor><creatorcontrib>Buchheim, Christoph</creatorcontrib><creatorcontrib>Ebner, Dietmar</creatorcontrib><creatorcontrib>Jünger, Michael</creatorcontrib><creatorcontrib>Klau, Gunnar W.</creatorcontrib><creatorcontrib>Mutzel, Petra</creatorcontrib><creatorcontrib>Weiskircher, René</creatorcontrib><title>Exact Crossing Minimization</title><title>Graph Drawing</title><description>The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph into the plane. This very basic property has been studied extensively in the literature from a theoretic point of view and many bounds exist for a variety of graph classes. In this paper, we present the first algorithm able to compute the crossing number of general sparse graphs of moderate size and present computational results on a popular benchmark set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.</description><subject>Applied sciences</subject><subject>Complete Bipartite Graph</subject><subject>Computer science; control theory; systems</subject><subject>Dummy Node</subject><subject>Edge Crossing</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Integer Linear Programming Formulation</subject><subject>Layout Problem</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540314257</isbn><isbn>3540314253</isbn><isbn>3540316671</isbn><isbn>9783540316671</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkLtOw0AQRZeXhAluaGnSINEYdjz7LJEVHlIQDdSr8cYbLSS25XUBfH0cBYnbjHTP0RSXsSvgd8C5vgdQYLg0ThyxC5SCIyil4ZhlE4ACUdgTllttDkyUUp-yjCMvC6sFnrM8pU8-BUFbbTN2vfgmP86roUsptuv5a2zjNv7SGLv2kp0F2qQm_7sz9vG4eK-ei-Xb00v1sCz6UoqxEBwUAXhoSgreUl2WchUabaQSIaD0qFCqGqfSWL63IBgyuKo91jURztjN4W9PydMmDNT6mFw_xC0NPw6sRa0BJu_24KUJtetmcHXXfSUH3O3Hcf_j4A5GTU-7</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Buchheim, Christoph</creator><creator>Ebner, Dietmar</creator><creator>Jünger, Michael</creator><creator>Klau, Gunnar W.</creator><creator>Mutzel, Petra</creator><creator>Weiskircher, René</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Exact Crossing Minimization</title><author>Buchheim, Christoph ; Ebner, Dietmar ; Jünger, Michael ; Klau, Gunnar W. ; Mutzel, Petra ; Weiskircher, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p254t-4016a11c1e2afc9ab225dfe78564ff35c36356b35df8901e2a1f8a83dbc3bbaa3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Complete Bipartite Graph</topic><topic>Computer science; control theory; systems</topic><topic>Dummy Node</topic><topic>Edge Crossing</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Integer Linear Programming Formulation</topic><topic>Layout Problem</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchheim, Christoph</creatorcontrib><creatorcontrib>Ebner, Dietmar</creatorcontrib><creatorcontrib>Jünger, Michael</creatorcontrib><creatorcontrib>Klau, Gunnar W.</creatorcontrib><creatorcontrib>Mutzel, Petra</creatorcontrib><creatorcontrib>Weiskircher, René</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchheim, Christoph</au><au>Ebner, Dietmar</au><au>Jünger, Michael</au><au>Klau, Gunnar W.</au><au>Mutzel, Petra</au><au>Weiskircher, René</au><au>Nikolov, Nikola S.</au><au>Healy, Patrick</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Exact Crossing Minimization</atitle><btitle>Graph Drawing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540314257</isbn><isbn>3540314253</isbn><eisbn>3540316671</eisbn><eisbn>9783540316671</eisbn><abstract>The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph into the plane. This very basic property has been studied extensively in the literature from a theoretic point of view and many bounds exist for a variety of graph classes. In this paper, we present the first algorithm able to compute the crossing number of general sparse graphs of moderate size and present computational results on a popular benchmark set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11618058_4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Graph Drawing, 2006, p.37-48
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19937711
source Springer Books
subjects Applied sciences
Complete Bipartite Graph
Computer science
control theory
systems
Dummy Node
Edge Crossing
Exact sciences and technology
Information retrieval. Graph
Integer Linear Programming Formulation
Layout Problem
Theoretical computing
title Exact Crossing Minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Exact%20Crossing%20Minimization&rft.btitle=Graph%20Drawing&rft.au=Buchheim,%20Christoph&rft.date=2006&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540314257&rft.isbn_list=3540314253&rft_id=info:doi/10.1007/11618058_4&rft_dat=%3Cpascalfrancis_sprin%3E19937711%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316671&rft.eisbn_list=9783540316671&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true