A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors

In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gökbulut, Muammer, Dandil, Beşir, Bal, Cafer
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue
container_start_page 125
container_title
container_volume
creator Gökbulut, Muammer
Dandil, Beşir
Bal, Cafer
description In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented.
doi_str_mv 10.1007/11803089_15
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19911195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19911195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-29ac755103e9fa3b395868db590eb8daf23230d9ebc45611235681b5deb093793</originalsourceid><addsrcrecordid>eNpNkD9PwzAUxM0_ibZ04gt4YWAI-PnFsd9YUkqRCiwwR3biQCHUld0O7acnqAxMN9zvTqdj7BLEDQihbwGMQGGoAnXExqQNqlxgYQowx2wABUCGmNMJGx4MDVicskGfkRnpHM_ZMKVPIYTUJAdMT_h85-Ky4c9-G0M22-73O16G1SaGrvORtyHyu7hNH51PiU9L_hQ2IaYLdtbaLvnxn47Y2-z-tZxni5eHx3KyyGpZwCaTZGutFAj01Fp0SMoUpnGKhHemsa1EiaIh7-pc9dslqsKAU413glATjtjVoXdtU227NtpVvUzVOi6_bdxVQAQApHru-sCl3lq9-1i5EL5SBaL6va36dxv-ACNoWAA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</title><source>Springer Books</source><creator>Gökbulut, Muammer ; Dandil, Beşir ; Bal, Cafer</creator><contributor>Savacı, F. Acar</contributor><creatorcontrib>Gökbulut, Muammer ; Dandil, Beşir ; Bal, Cafer ; Savacı, F. Acar</creatorcontrib><description>In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540367136</identifier><identifier>ISBN: 9783540367130</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540368618</identifier><identifier>EISBN: 3540368612</identifier><identifier>DOI: 10.1007/11803089_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; BLDC Motor ; Computer science; control theory; systems ; Direct Torque Control ; Exact sciences and technology ; Fuzzy Neural Network ; Propose Control System ; Steady State Error</subject><ispartof>Artificial Intelligence and Neural Networks, 2006, p.125-132</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-29ac755103e9fa3b395868db590eb8daf23230d9ebc45611235681b5deb093793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11803089_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11803089_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19911195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Savacı, F. Acar</contributor><creatorcontrib>Gökbulut, Muammer</creatorcontrib><creatorcontrib>Dandil, Beşir</creatorcontrib><creatorcontrib>Bal, Cafer</creatorcontrib><title>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</title><title>Artificial Intelligence and Neural Networks</title><description>In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>BLDC Motor</subject><subject>Computer science; control theory; systems</subject><subject>Direct Torque Control</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Neural Network</subject><subject>Propose Control System</subject><subject>Steady State Error</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540367136</isbn><isbn>9783540367130</isbn><isbn>9783540368618</isbn><isbn>3540368612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD9PwzAUxM0_ibZ04gt4YWAI-PnFsd9YUkqRCiwwR3biQCHUld0O7acnqAxMN9zvTqdj7BLEDQihbwGMQGGoAnXExqQNqlxgYQowx2wABUCGmNMJGx4MDVicskGfkRnpHM_ZMKVPIYTUJAdMT_h85-Ky4c9-G0M22-73O16G1SaGrvORtyHyu7hNH51PiU9L_hQ2IaYLdtbaLvnxn47Y2-z-tZxni5eHx3KyyGpZwCaTZGutFAj01Fp0SMoUpnGKhHemsa1EiaIh7-pc9dslqsKAU413glATjtjVoXdtU227NtpVvUzVOi6_bdxVQAQApHru-sCl3lq9-1i5EL5SBaL6va36dxv-ACNoWAA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Gökbulut, Muammer</creator><creator>Dandil, Beşir</creator><creator>Bal, Cafer</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</title><author>Gökbulut, Muammer ; Dandil, Beşir ; Bal, Cafer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-29ac755103e9fa3b395868db590eb8daf23230d9ebc45611235681b5deb093793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>BLDC Motor</topic><topic>Computer science; control theory; systems</topic><topic>Direct Torque Control</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Neural Network</topic><topic>Propose Control System</topic><topic>Steady State Error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gökbulut, Muammer</creatorcontrib><creatorcontrib>Dandil, Beşir</creatorcontrib><creatorcontrib>Bal, Cafer</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gökbulut, Muammer</au><au>Dandil, Beşir</au><au>Bal, Cafer</au><au>Savacı, F. Acar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</atitle><btitle>Artificial Intelligence and Neural Networks</btitle><date>2006</date><risdate>2006</risdate><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540367136</isbn><isbn>9783540367130</isbn><eisbn>9783540368618</eisbn><eisbn>3540368612</eisbn><abstract>In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11803089_15</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Intelligence and Neural Networks, 2006, p.125-132
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19911195
source Springer Books
subjects Applied sciences
Artificial intelligence
BLDC Motor
Computer science
control theory
systems
Direct Torque Control
Exact sciences and technology
Fuzzy Neural Network
Propose Control System
Steady State Error
title A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Hybrid%20Neuro-Fuzzy%20Controller%20for%20Brushless%20DC%20Motors&rft.btitle=Artificial%20Intelligence%20and%20Neural%20Networks&rft.au=G%C3%B6kbulut,%20Muammer&rft.date=2006&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540367136&rft.isbn_list=9783540367130&rft_id=info:doi/10.1007/11803089_15&rft_dat=%3Cpascalfrancis_sprin%3E19911195%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540368618&rft.eisbn_list=3540368612&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true