A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors
In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | |
container_volume | |
creator | Gökbulut, Muammer Dandil, Beşir Bal, Cafer |
description | In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented. |
doi_str_mv | 10.1007/11803089_15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19911195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19911195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-29ac755103e9fa3b395868db590eb8daf23230d9ebc45611235681b5deb093793</originalsourceid><addsrcrecordid>eNpNkD9PwzAUxM0_ibZ04gt4YWAI-PnFsd9YUkqRCiwwR3biQCHUld0O7acnqAxMN9zvTqdj7BLEDQihbwGMQGGoAnXExqQNqlxgYQowx2wABUCGmNMJGx4MDVicskGfkRnpHM_ZMKVPIYTUJAdMT_h85-Ky4c9-G0M22-73O16G1SaGrvORtyHyu7hNH51PiU9L_hQ2IaYLdtbaLvnxn47Y2-z-tZxni5eHx3KyyGpZwCaTZGutFAj01Fp0SMoUpnGKhHemsa1EiaIh7-pc9dslqsKAU413glATjtjVoXdtU227NtpVvUzVOi6_bdxVQAQApHru-sCl3lq9-1i5EL5SBaL6va36dxv-ACNoWAA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</title><source>Springer Books</source><creator>Gökbulut, Muammer ; Dandil, Beşir ; Bal, Cafer</creator><contributor>Savacı, F. Acar</contributor><creatorcontrib>Gökbulut, Muammer ; Dandil, Beşir ; Bal, Cafer ; Savacı, F. Acar</creatorcontrib><description>In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540367136</identifier><identifier>ISBN: 9783540367130</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540368618</identifier><identifier>EISBN: 3540368612</identifier><identifier>DOI: 10.1007/11803089_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; BLDC Motor ; Computer science; control theory; systems ; Direct Torque Control ; Exact sciences and technology ; Fuzzy Neural Network ; Propose Control System ; Steady State Error</subject><ispartof>Artificial Intelligence and Neural Networks, 2006, p.125-132</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-29ac755103e9fa3b395868db590eb8daf23230d9ebc45611235681b5deb093793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11803089_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11803089_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19911195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Savacı, F. Acar</contributor><creatorcontrib>Gökbulut, Muammer</creatorcontrib><creatorcontrib>Dandil, Beşir</creatorcontrib><creatorcontrib>Bal, Cafer</creatorcontrib><title>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</title><title>Artificial Intelligence and Neural Networks</title><description>In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>BLDC Motor</subject><subject>Computer science; control theory; systems</subject><subject>Direct Torque Control</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Neural Network</subject><subject>Propose Control System</subject><subject>Steady State Error</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540367136</isbn><isbn>9783540367130</isbn><isbn>9783540368618</isbn><isbn>3540368612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD9PwzAUxM0_ibZ04gt4YWAI-PnFsd9YUkqRCiwwR3biQCHUld0O7acnqAxMN9zvTqdj7BLEDQihbwGMQGGoAnXExqQNqlxgYQowx2wABUCGmNMJGx4MDVicskGfkRnpHM_ZMKVPIYTUJAdMT_h85-Ky4c9-G0M22-73O16G1SaGrvORtyHyu7hNH51PiU9L_hQ2IaYLdtbaLvnxn47Y2-z-tZxni5eHx3KyyGpZwCaTZGutFAj01Fp0SMoUpnGKhHemsa1EiaIh7-pc9dslqsKAU413glATjtjVoXdtU227NtpVvUzVOi6_bdxVQAQApHru-sCl3lq9-1i5EL5SBaL6va36dxv-ACNoWAA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Gökbulut, Muammer</creator><creator>Dandil, Beşir</creator><creator>Bal, Cafer</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</title><author>Gökbulut, Muammer ; Dandil, Beşir ; Bal, Cafer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-29ac755103e9fa3b395868db590eb8daf23230d9ebc45611235681b5deb093793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>BLDC Motor</topic><topic>Computer science; control theory; systems</topic><topic>Direct Torque Control</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Neural Network</topic><topic>Propose Control System</topic><topic>Steady State Error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gökbulut, Muammer</creatorcontrib><creatorcontrib>Dandil, Beşir</creatorcontrib><creatorcontrib>Bal, Cafer</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gökbulut, Muammer</au><au>Dandil, Beşir</au><au>Bal, Cafer</au><au>Savacı, F. Acar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors</atitle><btitle>Artificial Intelligence and Neural Networks</btitle><date>2006</date><risdate>2006</risdate><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540367136</isbn><isbn>9783540367130</isbn><eisbn>9783540368618</eisbn><eisbn>3540368612</eisbn><abstract>In this paper, a hybrid neuro-fuzzy controller (NFC) is presented for the speed control of brushless DC motors to improve the control performance of the drive under transient and steady state conditions. In the hybrid control system, proportional-derivative (PD) type neuro-fuzzy controller (NFC) is the main tracking controller, and an integral compensator is proposed to compensate the steady state errors. A simple and smooth activation mechanism described for integral compensator modifies the control law adaptively. The presented BLDC drive has fast tracking capability, less steady state error and robust to load disturbance, and do not need complicated control method. Experimental results showing the effectiveness of the proposed control system are presented.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11803089_15</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Artificial Intelligence and Neural Networks, 2006, p.125-132 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19911195 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence BLDC Motor Computer science control theory systems Direct Torque Control Exact sciences and technology Fuzzy Neural Network Propose Control System Steady State Error |
title | A Hybrid Neuro-Fuzzy Controller for Brushless DC Motors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Hybrid%20Neuro-Fuzzy%20Controller%20for%20Brushless%20DC%20Motors&rft.btitle=Artificial%20Intelligence%20and%20Neural%20Networks&rft.au=G%C3%B6kbulut,%20Muammer&rft.date=2006&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540367136&rft.isbn_list=9783540367130&rft_id=info:doi/10.1007/11803089_15&rft_dat=%3Cpascalfrancis_sprin%3E19911195%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540368618&rft.eisbn_list=3540368612&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |