Predestination: inferring destinations from partial trajectories

We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krumm, John, Horvitz, Eric
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue
container_start_page 243
container_title
container_volume
creator Krumm, John
Horvitz, Eric
description We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips.
doi_str_mv 10.1007/11853565_15
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_acm_b</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-a0374a13d63390c5ddf196a31357f13717893b138ef05625db0491cecefd1a023</originalsourceid><addsrcrecordid>eNqN0DtLxEAUBeDxBYY1Nv4FLRSi986dR6aUxRcsaKH1MJmHRHeTJZPGf28kFloI3uYW5-MUh7EThEsE0FeItSSppEW5w0qja5ICyCiSfJcVqBArImH2fmVC7rMCCHhltKBDVub8BtMRBylUwY6fhhhiHtvOjW3fHbGD5NY5lt9_wV5ub56X99Xq8e5heb2qHCk-Vg5IC4cUFJEBL0NIaJQjJKkTkkZdG2qQ6phAKi5DA8Kgjz6mgA44LdjZ3Lt12bt1Glzn22y3Q7txw4dFYxAMmcmdzy5PUfcaB9v0_Xu2CPZrE_tjk8lezNb5zd_MNkMb04RP_4HpE7aJYdM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predestination: inferring destinations from partial trajectories</title><source>Springer Books</source><creator>Krumm, John ; Horvitz, Eric</creator><contributor>Dourish, Paul ; Friday, Adrian ; Dourish, Paul ; Friday, Adrian</contributor><creatorcontrib>Krumm, John ; Horvitz, Eric ; Dourish, Paul ; Friday, Adrian ; Dourish, Paul ; Friday, Adrian</creatorcontrib><description>We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540396345</identifier><identifier>ISBN: 3540396349</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540396352</identifier><identifier>EISBN: 3540396357</identifier><identifier>DOI: 10.1007/11853565_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Destination Cell ; Driving Time ; Exact sciences and technology ; Ground Cover ; Kullback Leibler ; National Household Travel Survey ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.243-260</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-a0374a13d63390c5ddf196a31357f13717893b138ef05625db0491cecefd1a023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11853565_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11853565_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19910939$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dourish, Paul</contributor><contributor>Friday, Adrian</contributor><contributor>Dourish, Paul</contributor><contributor>Friday, Adrian</contributor><creatorcontrib>Krumm, John</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><title>Predestination: inferring destinations from partial trajectories</title><title>Lecture notes in computer science</title><description>We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Destination Cell</subject><subject>Driving Time</subject><subject>Exact sciences and technology</subject><subject>Ground Cover</subject><subject>Kullback Leibler</subject><subject>National Household Travel Survey</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540396345</isbn><isbn>3540396349</isbn><isbn>9783540396352</isbn><isbn>3540396357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqN0DtLxEAUBeDxBYY1Nv4FLRSi986dR6aUxRcsaKH1MJmHRHeTJZPGf28kFloI3uYW5-MUh7EThEsE0FeItSSppEW5w0qja5ICyCiSfJcVqBArImH2fmVC7rMCCHhltKBDVub8BtMRBylUwY6fhhhiHtvOjW3fHbGD5NY5lt9_wV5ub56X99Xq8e5heb2qHCk-Vg5IC4cUFJEBL0NIaJQjJKkTkkZdG2qQ6phAKi5DA8Kgjz6mgA44LdjZ3Lt12bt1Glzn22y3Q7txw4dFYxAMmcmdzy5PUfcaB9v0_Xu2CPZrE_tjk8lezNb5zd_MNkMb04RP_4HpE7aJYdM</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Krumm, John</creator><creator>Horvitz, Eric</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20060101</creationdate><title>Predestination</title><author>Krumm, John ; Horvitz, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-a0374a13d63390c5ddf196a31357f13717893b138ef05625db0491cecefd1a023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Destination Cell</topic><topic>Driving Time</topic><topic>Exact sciences and technology</topic><topic>Ground Cover</topic><topic>Kullback Leibler</topic><topic>National Household Travel Survey</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krumm, John</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krumm, John</au><au>Horvitz, Eric</au><au>Dourish, Paul</au><au>Friday, Adrian</au><au>Dourish, Paul</au><au>Friday, Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predestination: inferring destinations from partial trajectories</atitle><btitle>Lecture notes in computer science</btitle><date>2006-01-01</date><risdate>2006</risdate><spage>243</spage><epage>260</epage><pages>243-260</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540396345</isbn><isbn>3540396349</isbn><eisbn>9783540396352</eisbn><eisbn>3540396357</eisbn><abstract>We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/11853565_15</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.243-260
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19910939
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Destination Cell
Driving Time
Exact sciences and technology
Ground Cover
Kullback Leibler
National Household Travel Survey
Software
title Predestination: inferring destinations from partial trajectories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_acm_b&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predestination:%20inferring%20destinations%20from%20partial%20trajectories&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Krumm,%20John&rft.date=2006-01-01&rft.spage=243&rft.epage=260&rft.pages=243-260&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540396345&rft.isbn_list=3540396349&rft_id=info:doi/10.1007/11853565_15&rft_dat=%3Cpascalfrancis_acm_b%3E19910939%3C/pascalfrancis_acm_b%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540396352&rft.eisbn_list=3540396357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true