Predestination: inferring destinations from partial trajectories
We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering pr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | |
container_start_page | 243 |
container_title | |
container_volume | |
creator | Krumm, John Horvitz, Eric |
description | We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips. |
doi_str_mv | 10.1007/11853565_15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_acm_b</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-a0374a13d63390c5ddf196a31357f13717893b138ef05625db0491cecefd1a023</originalsourceid><addsrcrecordid>eNqN0DtLxEAUBeDxBYY1Nv4FLRSi986dR6aUxRcsaKH1MJmHRHeTJZPGf28kFloI3uYW5-MUh7EThEsE0FeItSSppEW5w0qja5ICyCiSfJcVqBArImH2fmVC7rMCCHhltKBDVub8BtMRBylUwY6fhhhiHtvOjW3fHbGD5NY5lt9_wV5ub56X99Xq8e5heb2qHCk-Vg5IC4cUFJEBL0NIaJQjJKkTkkZdG2qQ6phAKi5DA8Kgjz6mgA44LdjZ3Lt12bt1Glzn22y3Q7txw4dFYxAMmcmdzy5PUfcaB9v0_Xu2CPZrE_tjk8lezNb5zd_MNkMb04RP_4HpE7aJYdM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predestination: inferring destinations from partial trajectories</title><source>Springer Books</source><creator>Krumm, John ; Horvitz, Eric</creator><contributor>Dourish, Paul ; Friday, Adrian ; Dourish, Paul ; Friday, Adrian</contributor><creatorcontrib>Krumm, John ; Horvitz, Eric ; Dourish, Paul ; Friday, Adrian ; Dourish, Paul ; Friday, Adrian</creatorcontrib><description>We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540396345</identifier><identifier>ISBN: 3540396349</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540396352</identifier><identifier>EISBN: 3540396357</identifier><identifier>DOI: 10.1007/11853565_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Destination Cell ; Driving Time ; Exact sciences and technology ; Ground Cover ; Kullback Leibler ; National Household Travel Survey ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.243-260</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-a0374a13d63390c5ddf196a31357f13717893b138ef05625db0491cecefd1a023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11853565_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11853565_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19910939$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dourish, Paul</contributor><contributor>Friday, Adrian</contributor><contributor>Dourish, Paul</contributor><contributor>Friday, Adrian</contributor><creatorcontrib>Krumm, John</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><title>Predestination: inferring destinations from partial trajectories</title><title>Lecture notes in computer science</title><description>We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Destination Cell</subject><subject>Driving Time</subject><subject>Exact sciences and technology</subject><subject>Ground Cover</subject><subject>Kullback Leibler</subject><subject>National Household Travel Survey</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540396345</isbn><isbn>3540396349</isbn><isbn>9783540396352</isbn><isbn>3540396357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqN0DtLxEAUBeDxBYY1Nv4FLRSi986dR6aUxRcsaKH1MJmHRHeTJZPGf28kFloI3uYW5-MUh7EThEsE0FeItSSppEW5w0qja5ICyCiSfJcVqBArImH2fmVC7rMCCHhltKBDVub8BtMRBylUwY6fhhhiHtvOjW3fHbGD5NY5lt9_wV5ub56X99Xq8e5heb2qHCk-Vg5IC4cUFJEBL0NIaJQjJKkTkkZdG2qQ6phAKi5DA8Kgjz6mgA44LdjZ3Lt12bt1Glzn22y3Q7txw4dFYxAMmcmdzy5PUfcaB9v0_Xu2CPZrE_tjk8lezNb5zd_MNkMb04RP_4HpE7aJYdM</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Krumm, John</creator><creator>Horvitz, Eric</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20060101</creationdate><title>Predestination</title><author>Krumm, John ; Horvitz, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-a0374a13d63390c5ddf196a31357f13717893b138ef05625db0491cecefd1a023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Destination Cell</topic><topic>Driving Time</topic><topic>Exact sciences and technology</topic><topic>Ground Cover</topic><topic>Kullback Leibler</topic><topic>National Household Travel Survey</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krumm, John</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krumm, John</au><au>Horvitz, Eric</au><au>Dourish, Paul</au><au>Friday, Adrian</au><au>Dourish, Paul</au><au>Friday, Adrian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predestination: inferring destinations from partial trajectories</atitle><btitle>Lecture notes in computer science</btitle><date>2006-01-01</date><risdate>2006</risdate><spage>243</spage><epage>260</epage><pages>243-260</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540396345</isbn><isbn>3540396349</isbn><eisbn>9783540396352</eisbn><eisbn>3540396357</eisbn><abstract>We describe a method called Predestination that uses a history of a driver's destinations, along with data about driving behaviors, to predict where a driver is going as a trip progresses. Driving behaviors include types of destinations, driving efficiency, and trip times. Beyond considering previously visited destinations, Predestination leverages an open-world modeling methodology that considers the likelihood of users visiting previously unobserved locations based on trends in the data and on the background properties of locations. This allows our algorithm to smoothly transition between “out of the box” with no training data to more fully trained with increasing numbers of observations. Multiple components of the analysis are fused via Bayesian inference to produce a probabilistic map of destinations. Our algorithm was trained and tested on hold-out data drawn from a database of GPS driving data gathered from 169 different subjects who drove 7,335 different trips.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/11853565_15</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.243-260 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19910939 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Destination Cell Driving Time Exact sciences and technology Ground Cover Kullback Leibler National Household Travel Survey Software |
title | Predestination: inferring destinations from partial trajectories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_acm_b&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predestination:%20inferring%20destinations%20from%20partial%20trajectories&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Krumm,%20John&rft.date=2006-01-01&rft.spage=243&rft.epage=260&rft.pages=243-260&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540396345&rft.isbn_list=3540396349&rft_id=info:doi/10.1007/11853565_15&rft_dat=%3Cpascalfrancis_acm_b%3E19910939%3C/pascalfrancis_acm_b%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540396352&rft.eisbn_list=3540396357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |