Meta-search Based Web Resource Discovery for Object-Level Vertical Search

Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Ling, Li, Gang, Zhou, Lizhu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 16
container_title
container_volume
creator Lin, Ling
Li, Gang
Zhou, Lizhu
description Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient.
doi_str_mv 10.1007/11912873_5
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910833</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-cd3d4d824c2b71da547b04f9a9ef9630d6e556a74883dedd44c3f3b7b94f57c63</originalsourceid><addsrcrecordid>eNpVkMtLAzEYxOMLrLUX_4JcBC-rSb5kkxy1vgqVgs_jkse3urV2S7IW-t9brSCe5jC_mYEh5IizU86YPuPccmE0VGqLDKw2oCSThjMttkmPl5wXANLu_POU2SU9BkwUVkvYJwc5TxljQlvRI6M77FyR0aXwRi9cxkhf0NN7zO1nCkgvmxzaJaYVrdtEJ36KoSvGuMQZfcbUNcHN6MNP-pDs1W6WcfCrffJ0ffU4vC3Gk5vR8HxcLAQ3XREiRBmNkEF4zaNTUnsma-ss1rYEFktUqnRaGgMRY5QyQA1eeytrpUMJfXK86V24vF6vk5uHJleL1Hy4tKq4tZwZgDV3suHy2pq_Yqp8277nirPq-8rq70r4AlJyX8k</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</title><source>Springer Books</source><creator>Lin, Ling ; Li, Gang ; Zhou, Lizhu</creator><contributor>Rundensteiner, Elke A. ; Li, Xuhui ; Aberer, Karl ; Peng, Zhiyong ; Zhang, Yanchun</contributor><creatorcontrib>Lin, Ling ; Li, Gang ; Zhou, Lizhu ; Rundensteiner, Elke A. ; Li, Xuhui ; Aberer, Karl ; Peng, Zhiyong ; Zhang, Yanchun</creatorcontrib><description>Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540481058</identifier><identifier>ISBN: 3540481052</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540481072</identifier><identifier>EISBN: 3540481079</identifier><identifier>DOI: 10.1007/11912873_5</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.16-27</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11912873_5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11912873_5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19910833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rundensteiner, Elke A.</contributor><contributor>Li, Xuhui</contributor><contributor>Aberer, Karl</contributor><contributor>Peng, Zhiyong</contributor><contributor>Zhang, Yanchun</contributor><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhou, Lizhu</creatorcontrib><title>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</title><title>Lecture notes in computer science</title><description>Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540481058</isbn><isbn>3540481052</isbn><isbn>9783540481072</isbn><isbn>3540481079</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkMtLAzEYxOMLrLUX_4JcBC-rSb5kkxy1vgqVgs_jkse3urV2S7IW-t9brSCe5jC_mYEh5IizU86YPuPccmE0VGqLDKw2oCSThjMttkmPl5wXANLu_POU2SU9BkwUVkvYJwc5TxljQlvRI6M77FyR0aXwRi9cxkhf0NN7zO1nCkgvmxzaJaYVrdtEJ36KoSvGuMQZfcbUNcHN6MNP-pDs1W6WcfCrffJ0ffU4vC3Gk5vR8HxcLAQ3XREiRBmNkEF4zaNTUnsma-ss1rYEFktUqnRaGgMRY5QyQA1eeytrpUMJfXK86V24vF6vk5uHJleL1Hy4tKq4tZwZgDV3suHy2pq_Yqp8277nirPq-8rq70r4AlJyX8k</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lin, Ling</creator><creator>Li, Gang</creator><creator>Zhou, Lizhu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</title><author>Lin, Ling ; Li, Gang ; Zhou, Lizhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-cd3d4d824c2b71da547b04f9a9ef9630d6e556a74883dedd44c3f3b7b94f57c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhou, Lizhu</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ling</au><au>Li, Gang</au><au>Zhou, Lizhu</au><au>Rundensteiner, Elke A.</au><au>Li, Xuhui</au><au>Aberer, Karl</au><au>Peng, Zhiyong</au><au>Zhang, Yanchun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540481058</isbn><isbn>3540481052</isbn><eisbn>9783540481072</eisbn><eisbn>3540481079</eisbn><abstract>Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11912873_5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.16-27
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19910833
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Software
title Meta-search Based Web Resource Discovery for Object-Level Vertical Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Meta-search%20Based%20Web%20Resource%20Discovery%20for%20Object-Level%20Vertical%20Search&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Lin,%20Ling&rft.date=2006&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540481058&rft.isbn_list=3540481052&rft_id=info:doi/10.1007/11912873_5&rft_dat=%3Cpascalfrancis_sprin%3E19910833%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540481072&rft.eisbn_list=3540481079&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true