Meta-search Based Web Resource Discovery for Object-Level Vertical Search
Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | |
container_start_page | 16 |
container_title | |
container_volume | |
creator | Lin, Ling Li, Gang Zhou, Lizhu |
description | Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient. |
doi_str_mv | 10.1007/11912873_5 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910833</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-cd3d4d824c2b71da547b04f9a9ef9630d6e556a74883dedd44c3f3b7b94f57c63</originalsourceid><addsrcrecordid>eNpVkMtLAzEYxOMLrLUX_4JcBC-rSb5kkxy1vgqVgs_jkse3urV2S7IW-t9brSCe5jC_mYEh5IizU86YPuPccmE0VGqLDKw2oCSThjMttkmPl5wXANLu_POU2SU9BkwUVkvYJwc5TxljQlvRI6M77FyR0aXwRi9cxkhf0NN7zO1nCkgvmxzaJaYVrdtEJ36KoSvGuMQZfcbUNcHN6MNP-pDs1W6WcfCrffJ0ffU4vC3Gk5vR8HxcLAQ3XREiRBmNkEF4zaNTUnsma-ss1rYEFktUqnRaGgMRY5QyQA1eeytrpUMJfXK86V24vF6vk5uHJleL1Hy4tKq4tZwZgDV3suHy2pq_Yqp8277nirPq-8rq70r4AlJyX8k</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</title><source>Springer Books</source><creator>Lin, Ling ; Li, Gang ; Zhou, Lizhu</creator><contributor>Rundensteiner, Elke A. ; Li, Xuhui ; Aberer, Karl ; Peng, Zhiyong ; Zhang, Yanchun</contributor><creatorcontrib>Lin, Ling ; Li, Gang ; Zhou, Lizhu ; Rundensteiner, Elke A. ; Li, Xuhui ; Aberer, Karl ; Peng, Zhiyong ; Zhang, Yanchun</creatorcontrib><description>Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540481058</identifier><identifier>ISBN: 3540481052</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540481072</identifier><identifier>EISBN: 3540481079</identifier><identifier>DOI: 10.1007/11912873_5</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.16-27</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11912873_5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11912873_5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19910833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rundensteiner, Elke A.</contributor><contributor>Li, Xuhui</contributor><contributor>Aberer, Karl</contributor><contributor>Peng, Zhiyong</contributor><contributor>Zhang, Yanchun</contributor><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhou, Lizhu</creatorcontrib><title>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</title><title>Lecture notes in computer science</title><description>Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540481058</isbn><isbn>3540481052</isbn><isbn>9783540481072</isbn><isbn>3540481079</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkMtLAzEYxOMLrLUX_4JcBC-rSb5kkxy1vgqVgs_jkse3urV2S7IW-t9brSCe5jC_mYEh5IizU86YPuPccmE0VGqLDKw2oCSThjMttkmPl5wXANLu_POU2SU9BkwUVkvYJwc5TxljQlvRI6M77FyR0aXwRi9cxkhf0NN7zO1nCkgvmxzaJaYVrdtEJ36KoSvGuMQZfcbUNcHN6MNP-pDs1W6WcfCrffJ0ffU4vC3Gk5vR8HxcLAQ3XREiRBmNkEF4zaNTUnsma-ss1rYEFktUqnRaGgMRY5QyQA1eeytrpUMJfXK86V24vF6vk5uHJleL1Hy4tKq4tZwZgDV3suHy2pq_Yqp8277nirPq-8rq70r4AlJyX8k</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lin, Ling</creator><creator>Li, Gang</creator><creator>Zhou, Lizhu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</title><author>Lin, Ling ; Li, Gang ; Zhou, Lizhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-cd3d4d824c2b71da547b04f9a9ef9630d6e556a74883dedd44c3f3b7b94f57c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhou, Lizhu</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ling</au><au>Li, Gang</au><au>Zhou, Lizhu</au><au>Rundensteiner, Elke A.</au><au>Li, Xuhui</au><au>Aberer, Karl</au><au>Peng, Zhiyong</au><au>Zhang, Yanchun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Meta-search Based Web Resource Discovery for Object-Level Vertical Search</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540481058</isbn><isbn>3540481052</isbn><eisbn>9783540481072</eisbn><eisbn>3540481079</eisbn><abstract>Object-level vertical search engine has been the research focus recently where the resource collecting problem is still an open area. It is difficult to adapt the traditional link-based web crawler for this task because of the sparse linkage and data-centered webpage of the relevant resources. In this paper, we propose a meta-search based method enhanced with auxiliary crawling to address the problem caused by sparse linkage of the relevant resources. And to retrieve the data-centered webpages efficiently, domain schema is defined to describe the target resource, and representative data instances are selected for meta-search query composing. Moreover, evaluation criteria for the domain resource survey are also proposed as the guideline for query composing and auxiliary crawling, which enable the resource discovery to be automatically performed by computers. Experiment results on real-world data show that our method is effective and efficient.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11912873_5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.16-27 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19910833 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Software |
title | Meta-search Based Web Resource Discovery for Object-Level Vertical Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Meta-search%20Based%20Web%20Resource%20Discovery%20for%20Object-Level%20Vertical%20Search&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Lin,%20Ling&rft.date=2006&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540481058&rft.isbn_list=3540481052&rft_id=info:doi/10.1007/11912873_5&rft_dat=%3Cpascalfrancis_sprin%3E19910833%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540481072&rft.eisbn_list=3540481079&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |