ICA-Based Speech Features in the Frequency Domain

We apply the technique of independent component analysis to Fourier power coefficients of speech signal frames for a blind detection of basic vectors (sources). A subset of sources corresponding to the noisy influence of basic frequency is identified and its corresponding features could be eliminate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kasprzak, Włodzimierz, Okazaki, Adam F., Kowalski, Adam B.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 616
container_issue
container_start_page 609
container_title
container_volume
creator Kasprzak, Włodzimierz
Okazaki, Adam F.
Kowalski, Adam B.
description We apply the technique of independent component analysis to Fourier power coefficients of speech signal frames for a blind detection of basic vectors (sources). A subset of sources corresponding to the noisy influence of basic frequency is identified and its corresponding features could be eliminated. The mixing coefficients for such sources are then determined for every speech sample. We compare our features with the Mel Frequency Cepstrum Coefficient (MFCC) features, widely used today for phoneme-based speech recognition.
doi_str_mv 10.1007/11679363_76
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910723</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-4f91507daf4b3079dd8bb08ce8cd4678f40739622edb6b9a43cfaacb17663bec3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURs2fRFuYeIEsDAyBe31dOx6hJYBUiQGYLdu5oYE2DXE79O0pKhJM33COzvAJcYFwjQDmBlEbS5qc0QdiSGMFJDWhPhQD1Ig5kbJHfwCKYzEAAplbo-hUDFP6AABprBwIfJrc5nc-cZW9dMxxnpXs15ueU9a02XrOWdnz14bbuM2mq6Vv2jNxUvtF4vPfHYm38v518pjPnh92sVneybFe56q2OAZT-VoFAmOrqggBishFrJQ2Ra3AkNVSchV0sF5RrL2PAY3WFDjSSFzuu51P0S_q3rexSa7rm6Xvtw6tRTCSdt7V3ks71L5z78Jq9Zkcgvt5y_17i74B66FV9w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>ICA-Based Speech Features in the Frequency Domain</title><source>Springer Books</source><creator>Kasprzak, Włodzimierz ; Okazaki, Adam F. ; Kowalski, Adam B.</creator><contributor>Erdogmus, Deniz ; Haykin, Simon ; Príncipe, José C. ; Rosca, Justinian</contributor><creatorcontrib>Kasprzak, Włodzimierz ; Okazaki, Adam F. ; Kowalski, Adam B. ; Erdogmus, Deniz ; Haykin, Simon ; Príncipe, José C. ; Rosca, Justinian</creatorcontrib><description>We apply the technique of independent component analysis to Fourier power coefficients of speech signal frames for a blind detection of basic vectors (sources). A subset of sources corresponding to the noisy influence of basic frequency is identified and its corresponding features could be eliminated. The mixing coefficients for such sources are then determined for every speech sample. We compare our features with the Mel Frequency Cepstrum Coefficient (MFCC) features, widely used today for phoneme-based speech recognition.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540326308</identifier><identifier>ISBN: 9783540326304</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540326316</identifier><identifier>EISBN: 9783540326311</identifier><identifier>DOI: 10.1007/11679363_76</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Automatic Speech Recognition ; Computer science; control theory; systems ; Exact sciences and technology ; Independent Component Analysis ; Information, signal and communications theory ; Signal processing ; Speaker Recognition ; Speech and sound recognition and synthesis. Linguistics ; Speech Recognition ; Speech Sample ; Telecommunications and information theory</subject><ispartof>Independent Component Analysis and Blind Signal Separation, 2006, p.609-616</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11679363_76$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11679363_76$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19910723$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Erdogmus, Deniz</contributor><contributor>Haykin, Simon</contributor><contributor>Príncipe, José C.</contributor><contributor>Rosca, Justinian</contributor><creatorcontrib>Kasprzak, Włodzimierz</creatorcontrib><creatorcontrib>Okazaki, Adam F.</creatorcontrib><creatorcontrib>Kowalski, Adam B.</creatorcontrib><title>ICA-Based Speech Features in the Frequency Domain</title><title>Independent Component Analysis and Blind Signal Separation</title><description>We apply the technique of independent component analysis to Fourier power coefficients of speech signal frames for a blind detection of basic vectors (sources). A subset of sources corresponding to the noisy influence of basic frequency is identified and its corresponding features could be eliminated. The mixing coefficients for such sources are then determined for every speech sample. We compare our features with the Mel Frequency Cepstrum Coefficient (MFCC) features, widely used today for phoneme-based speech recognition.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automatic Speech Recognition</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Independent Component Analysis</subject><subject>Information, signal and communications theory</subject><subject>Signal processing</subject><subject>Speaker Recognition</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Speech Recognition</subject><subject>Speech Sample</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540326308</isbn><isbn>9783540326304</isbn><isbn>3540326316</isbn><isbn>9783540326311</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkL1OwzAURs2fRFuYeIEsDAyBe31dOx6hJYBUiQGYLdu5oYE2DXE79O0pKhJM33COzvAJcYFwjQDmBlEbS5qc0QdiSGMFJDWhPhQD1Ig5kbJHfwCKYzEAAplbo-hUDFP6AABprBwIfJrc5nc-cZW9dMxxnpXs15ueU9a02XrOWdnz14bbuM2mq6Vv2jNxUvtF4vPfHYm38v518pjPnh92sVneybFe56q2OAZT-VoFAmOrqggBishFrJQ2Ra3AkNVSchV0sF5RrL2PAY3WFDjSSFzuu51P0S_q3rexSa7rm6Xvtw6tRTCSdt7V3ks71L5z78Jq9Zkcgvt5y_17i74B66FV9w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kasprzak, Włodzimierz</creator><creator>Okazaki, Adam F.</creator><creator>Kowalski, Adam B.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>ICA-Based Speech Features in the Frequency Domain</title><author>Kasprzak, Włodzimierz ; Okazaki, Adam F. ; Kowalski, Adam B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-4f91507daf4b3079dd8bb08ce8cd4678f40739622edb6b9a43cfaacb17663bec3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automatic Speech Recognition</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Independent Component Analysis</topic><topic>Information, signal and communications theory</topic><topic>Signal processing</topic><topic>Speaker Recognition</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Speech Recognition</topic><topic>Speech Sample</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasprzak, Włodzimierz</creatorcontrib><creatorcontrib>Okazaki, Adam F.</creatorcontrib><creatorcontrib>Kowalski, Adam B.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasprzak, Włodzimierz</au><au>Okazaki, Adam F.</au><au>Kowalski, Adam B.</au><au>Erdogmus, Deniz</au><au>Haykin, Simon</au><au>Príncipe, José C.</au><au>Rosca, Justinian</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>ICA-Based Speech Features in the Frequency Domain</atitle><btitle>Independent Component Analysis and Blind Signal Separation</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>609</spage><epage>616</epage><pages>609-616</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540326308</isbn><isbn>9783540326304</isbn><eisbn>3540326316</eisbn><eisbn>9783540326311</eisbn><abstract>We apply the technique of independent component analysis to Fourier power coefficients of speech signal frames for a blind detection of basic vectors (sources). A subset of sources corresponding to the noisy influence of basic frequency is identified and its corresponding features could be eliminated. The mixing coefficients for such sources are then determined for every speech sample. We compare our features with the Mel Frequency Cepstrum Coefficient (MFCC) features, widely used today for phoneme-based speech recognition.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11679363_76</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Independent Component Analysis and Blind Signal Separation, 2006, p.609-616
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19910723
source Springer Books
subjects Applied sciences
Artificial intelligence
Automatic Speech Recognition
Computer science
control theory
systems
Exact sciences and technology
Independent Component Analysis
Information, signal and communications theory
Signal processing
Speaker Recognition
Speech and sound recognition and synthesis. Linguistics
Speech Recognition
Speech Sample
Telecommunications and information theory
title ICA-Based Speech Features in the Frequency Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=ICA-Based%20Speech%20Features%20in%20the%20Frequency%20Domain&rft.btitle=Independent%20Component%20Analysis%20and%20Blind%20Signal%20Separation&rft.au=Kasprzak,%20W%C5%82odzimierz&rft.date=2006&rft.spage=609&rft.epage=616&rft.pages=609-616&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540326308&rft.isbn_list=9783540326304&rft_id=info:doi/10.1007/11679363_76&rft_dat=%3Cpascalfrancis_sprin%3E19910723%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540326316&rft.eisbn_list=9783540326311&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true