Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets
This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative valu...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | |
container_volume | |
creator | Rodriguez, Yanet Garcia, Maria M. De Baets, Bernard Bello, Rafael Morell, Carlos |
description | This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability. |
doi_str_mv | 10.1007/11874850_28 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-1b0f0e8dcded89f41ef7f24a8c85633dee621583dd248906db2f2bb372f9e8073</originalsourceid><addsrcrecordid>eNpNkE1PAjEURetXIiIr_0A3LlyMvtd2pu0SCYgJohFZT6bTloziQKbFOPx6IWji3bybnJO3uIRcIdwigLxDVFKoFHKmjsgFTwWIVGQCjkkHM8SEc6FPSE9L9cdYeko6wIElWgp-TnohvMMuHFOZZR0yG35HV9uqXtCCjlvTVJYO7l-T_nRKn1bWLalpD2WvvDTOVmWsvhztx9hUZhNdoPOwZ6PNdtvSmYvhkpz5Yhlc7_d2yXw0fBuMk8nzw-OgP0nWDHVM0IAHp2xpnVXaC3ReeiYKVao049w6lzFMFbeWCaUhs4Z5ZgyXzGunQPIuuT78XRehLJa-KeqyCvm6qT6Lps1RawShcefdHLywQ_XCNblZrT5CjpDvV83_rcp_AOo-Y14</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</title><source>Springer Books</source><creator>Rodriguez, Yanet ; Garcia, Maria M. ; De Baets, Bernard ; Bello, Rafael ; Morell, Carlos</creator><contributor>Rezende, Solange Oliveira ; Coelho, Helder ; Sichman, Jaime Simão</contributor><creatorcontrib>Rodriguez, Yanet ; Garcia, Maria M. ; De Baets, Bernard ; Bello, Rafael ; Morell, Carlos ; Rezende, Solange Oliveira ; Coelho, Helder ; Sichman, Jaime Simão</creatorcontrib><description>This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540454625</identifier><identifier>ISBN: 3540454624</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540454640</identifier><identifier>EISBN: 9783540454649</identifier><identifier>DOI: 10.1007/11874850_28</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software ; Speech and sound recognition and synthesis. Linguistics</subject><ispartof>Advances in Artificial Intelligence - IBERAMIA-SBIA 2006, 2006, p.238-248</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11874850_28$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11874850_28$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19910491$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rezende, Solange Oliveira</contributor><contributor>Coelho, Helder</contributor><contributor>Sichman, Jaime Simão</contributor><creatorcontrib>Rodriguez, Yanet</creatorcontrib><creatorcontrib>Garcia, Maria M.</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><creatorcontrib>Bello, Rafael</creatorcontrib><creatorcontrib>Morell, Carlos</creatorcontrib><title>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</title><title>Advances in Artificial Intelligence - IBERAMIA-SBIA 2006</title><description>This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540454625</isbn><isbn>3540454624</isbn><isbn>3540454640</isbn><isbn>9783540454649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1PAjEURetXIiIr_0A3LlyMvtd2pu0SCYgJohFZT6bTloziQKbFOPx6IWji3bybnJO3uIRcIdwigLxDVFKoFHKmjsgFTwWIVGQCjkkHM8SEc6FPSE9L9cdYeko6wIElWgp-TnohvMMuHFOZZR0yG35HV9uqXtCCjlvTVJYO7l-T_nRKn1bWLalpD2WvvDTOVmWsvhztx9hUZhNdoPOwZ6PNdtvSmYvhkpz5Yhlc7_d2yXw0fBuMk8nzw-OgP0nWDHVM0IAHp2xpnVXaC3ReeiYKVao049w6lzFMFbeWCaUhs4Z5ZgyXzGunQPIuuT78XRehLJa-KeqyCvm6qT6Lps1RawShcefdHLywQ_XCNblZrT5CjpDvV83_rcp_AOo-Y14</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Rodriguez, Yanet</creator><creator>Garcia, Maria M.</creator><creator>De Baets, Bernard</creator><creator>Bello, Rafael</creator><creator>Morell, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</title><author>Rodriguez, Yanet ; Garcia, Maria M. ; De Baets, Bernard ; Bello, Rafael ; Morell, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-1b0f0e8dcded89f41ef7f24a8c85633dee621583dd248906db2f2bb372f9e8073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Yanet</creatorcontrib><creatorcontrib>Garcia, Maria M.</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><creatorcontrib>Bello, Rafael</creatorcontrib><creatorcontrib>Morell, Carlos</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Yanet</au><au>Garcia, Maria M.</au><au>De Baets, Bernard</au><au>Bello, Rafael</au><au>Morell, Carlos</au><au>Rezende, Solange Oliveira</au><au>Coelho, Helder</au><au>Sichman, Jaime Simão</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</atitle><btitle>Advances in Artificial Intelligence - IBERAMIA-SBIA 2006</btitle><date>2006</date><risdate>2006</risdate><spage>238</spage><epage>248</epage><pages>238-248</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540454625</isbn><isbn>3540454624</isbn><eisbn>3540454640</eisbn><eisbn>9783540454649</eisbn><abstract>This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11874850_28</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Artificial Intelligence - IBERAMIA-SBIA 2006, 2006, p.238-248 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19910491 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Software Speech and sound recognition and synthesis. Linguistics |
title | Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extending%20a%20Hybrid%20CBR-ANN%20Model%20by%20Modeling%20Predictive%20Attributes%20Using%20Fuzzy%20Sets&rft.btitle=Advances%20in%20Artificial%20Intelligence%20-%20IBERAMIA-SBIA%202006&rft.au=Rodriguez,%20Yanet&rft.date=2006&rft.spage=238&rft.epage=248&rft.pages=238-248&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540454625&rft.isbn_list=3540454624&rft_id=info:doi/10.1007/11874850_28&rft_dat=%3Cpascalfrancis_sprin%3E19910491%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540454640&rft.eisbn_list=9783540454649&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |