Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets

This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative valu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rodriguez, Yanet, Garcia, Maria M., De Baets, Bernard, Bello, Rafael, Morell, Carlos
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue
container_start_page 238
container_title
container_volume
creator Rodriguez, Yanet
Garcia, Maria M.
De Baets, Bernard
Bello, Rafael
Morell, Carlos
description This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability.
doi_str_mv 10.1007/11874850_28
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-1b0f0e8dcded89f41ef7f24a8c85633dee621583dd248906db2f2bb372f9e8073</originalsourceid><addsrcrecordid>eNpNkE1PAjEURetXIiIr_0A3LlyMvtd2pu0SCYgJohFZT6bTloziQKbFOPx6IWji3bybnJO3uIRcIdwigLxDVFKoFHKmjsgFTwWIVGQCjkkHM8SEc6FPSE9L9cdYeko6wIElWgp-TnohvMMuHFOZZR0yG35HV9uqXtCCjlvTVJYO7l-T_nRKn1bWLalpD2WvvDTOVmWsvhztx9hUZhNdoPOwZ6PNdtvSmYvhkpz5Yhlc7_d2yXw0fBuMk8nzw-OgP0nWDHVM0IAHp2xpnVXaC3ReeiYKVao049w6lzFMFbeWCaUhs4Z5ZgyXzGunQPIuuT78XRehLJa-KeqyCvm6qT6Lps1RawShcefdHLywQ_XCNblZrT5CjpDvV83_rcp_AOo-Y14</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</title><source>Springer Books</source><creator>Rodriguez, Yanet ; Garcia, Maria M. ; De Baets, Bernard ; Bello, Rafael ; Morell, Carlos</creator><contributor>Rezende, Solange Oliveira ; Coelho, Helder ; Sichman, Jaime Simão</contributor><creatorcontrib>Rodriguez, Yanet ; Garcia, Maria M. ; De Baets, Bernard ; Bello, Rafael ; Morell, Carlos ; Rezende, Solange Oliveira ; Coelho, Helder ; Sichman, Jaime Simão</creatorcontrib><description>This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540454625</identifier><identifier>ISBN: 3540454624</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540454640</identifier><identifier>EISBN: 9783540454649</identifier><identifier>DOI: 10.1007/11874850_28</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software ; Speech and sound recognition and synthesis. Linguistics</subject><ispartof>Advances in Artificial Intelligence - IBERAMIA-SBIA 2006, 2006, p.238-248</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11874850_28$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11874850_28$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19910491$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rezende, Solange Oliveira</contributor><contributor>Coelho, Helder</contributor><contributor>Sichman, Jaime Simão</contributor><creatorcontrib>Rodriguez, Yanet</creatorcontrib><creatorcontrib>Garcia, Maria M.</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><creatorcontrib>Bello, Rafael</creatorcontrib><creatorcontrib>Morell, Carlos</creatorcontrib><title>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</title><title>Advances in Artificial Intelligence - IBERAMIA-SBIA 2006</title><description>This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540454625</isbn><isbn>3540454624</isbn><isbn>3540454640</isbn><isbn>9783540454649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1PAjEURetXIiIr_0A3LlyMvtd2pu0SCYgJohFZT6bTloziQKbFOPx6IWji3bybnJO3uIRcIdwigLxDVFKoFHKmjsgFTwWIVGQCjkkHM8SEc6FPSE9L9cdYeko6wIElWgp-TnohvMMuHFOZZR0yG35HV9uqXtCCjlvTVJYO7l-T_nRKn1bWLalpD2WvvDTOVmWsvhztx9hUZhNdoPOwZ6PNdtvSmYvhkpz5Yhlc7_d2yXw0fBuMk8nzw-OgP0nWDHVM0IAHp2xpnVXaC3ReeiYKVao049w6lzFMFbeWCaUhs4Z5ZgyXzGunQPIuuT78XRehLJa-KeqyCvm6qT6Lps1RawShcefdHLywQ_XCNblZrT5CjpDvV83_rcp_AOo-Y14</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Rodriguez, Yanet</creator><creator>Garcia, Maria M.</creator><creator>De Baets, Bernard</creator><creator>Bello, Rafael</creator><creator>Morell, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</title><author>Rodriguez, Yanet ; Garcia, Maria M. ; De Baets, Bernard ; Bello, Rafael ; Morell, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-1b0f0e8dcded89f41ef7f24a8c85633dee621583dd248906db2f2bb372f9e8073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Yanet</creatorcontrib><creatorcontrib>Garcia, Maria M.</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><creatorcontrib>Bello, Rafael</creatorcontrib><creatorcontrib>Morell, Carlos</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Yanet</au><au>Garcia, Maria M.</au><au>De Baets, Bernard</au><au>Bello, Rafael</au><au>Morell, Carlos</au><au>Rezende, Solange Oliveira</au><au>Coelho, Helder</au><au>Sichman, Jaime Simão</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets</atitle><btitle>Advances in Artificial Intelligence - IBERAMIA-SBIA 2006</btitle><date>2006</date><risdate>2006</risdate><spage>238</spage><epage>248</epage><pages>238-248</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540454625</isbn><isbn>3540454624</isbn><eisbn>3540454640</eisbn><eisbn>9783540454649</eisbn><abstract>This paper presents an extension of an existing hybrid model for the development of knowledge-based systems, combining case-based reasoning (CBR) and artificial neural networks (ANN). The extension consists of the modeling of predictive attributes in terms of fuzzy sets. As such, representative values for numeric attributes are fuzzy sets, facilitating the use of natural language, thus accounting for words with ambiguous meanings. The topology and learning of the associative ANN are based on these representative values. The ANN is used for suggesting the value of the target attribute for a given query. Afterwards, the case-based module justifies the solution provided by the ANN using a similarity function, which includes the weights of the ANN and the membership degrees in the fuzzy sets considered. Experimental results show that the proposed model preserves the advantages of the hybridization used in the original model, while guaranteeing robustness and interpretability.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11874850_28</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Artificial Intelligence - IBERAMIA-SBIA 2006, 2006, p.238-248
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19910491
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Software
Speech and sound recognition and synthesis. Linguistics
title Extending a Hybrid CBR-ANN Model by Modeling Predictive Attributes Using Fuzzy Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extending%20a%20Hybrid%20CBR-ANN%20Model%20by%20Modeling%20Predictive%20Attributes%20Using%20Fuzzy%20Sets&rft.btitle=Advances%20in%20Artificial%20Intelligence%20-%20IBERAMIA-SBIA%202006&rft.au=Rodriguez,%20Yanet&rft.date=2006&rft.spage=238&rft.epage=248&rft.pages=238-248&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540454625&rft.isbn_list=3540454624&rft_id=info:doi/10.1007/11874850_28&rft_dat=%3Cpascalfrancis_sprin%3E19910491%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540454640&rft.eisbn_list=9783540454649&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true