Ensembles of Nearest Neighbor Forecasts

Nearest neighbor forecasting models are attractive with their simplicity and the ability to predict complex nonlinear behavior. They rely on the assumption that observations similar to the target one are also likely to have similar outcomes. A common practice in nearest neighbor model selection is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yankov, Dragomir, DeCoste, Dennis, Keogh, Eamonn
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue
container_start_page 545
container_title
container_volume
creator Yankov, Dragomir
DeCoste, Dennis
Keogh, Eamonn
description Nearest neighbor forecasting models are attractive with their simplicity and the ability to predict complex nonlinear behavior. They rely on the assumption that observations similar to the target one are also likely to have similar outcomes. A common practice in nearest neighbor model selection is to compute the globally optimal number of neighbors on a validation set, which is later applied for all incoming queries. For certain queries, however, this number may be suboptimal and forecasts that deviate a lot from the true realization could be produced. To address the problem we propose an alternative approach of training ensembles of nearest neighbor predictors that determine the best number of neighbors for individual queries. We demonstrate that the forecasts of the ensembles improve significantly on the globally optimal single predictors.
doi_str_mv 10.1007/11871842_51
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-77b82f26ea5edcd6eefae3868746fcf2404b41c8882ca9960613792fc29def7d3</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SUcnEH8iCEEPAz98eUdUCUgULzJbjPJdA21R2Fv49RkWCW264e3dPR8gl0FugVN8BGA1GMCfhiNRWGy4FFYpKJY9JBQqg5VzYkz9Nci3NKakop6y1WvBzUuf8QQt4CROsIteLXcZtt8HcjLF5Rp8wT4WH9Xs3pmY5Jgw-T_mCnEW_yVj_8oy8LRev88d29fLwNL9ftYFZM7Vad4ZFptBL7EOvEKNHblQpUzFEVp7qBARjDAveWkUVcG1ZLNc9Rt3zGbk65O59Dn4Tk9-FIbt9GrY-fTmwFii3ovhuDr5cpN0ak-vG8TM7oO5nLPdvLP4NH41U3A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Ensembles of Nearest Neighbor Forecasts</title><source>Springer Books</source><creator>Yankov, Dragomir ; DeCoste, Dennis ; Keogh, Eamonn</creator><contributor>Fürnkranz, Johannes ; Spiliopoulou, Myra ; Scheffer, Tobias</contributor><creatorcontrib>Yankov, Dragomir ; DeCoste, Dennis ; Keogh, Eamonn ; Fürnkranz, Johannes ; Spiliopoulou, Myra ; Scheffer, Tobias</creatorcontrib><description>Nearest neighbor forecasting models are attractive with their simplicity and the ability to predict complex nonlinear behavior. They rely on the assumption that observations similar to the target one are also likely to have similar outcomes. A common practice in nearest neighbor model selection is to compute the globally optimal number of neighbors on a validation set, which is later applied for all incoming queries. For certain queries, however, this number may be suboptimal and forecasts that deviate a lot from the true realization could be produced. To address the problem we propose an alternative approach of training ensembles of nearest neighbor predictors that determine the best number of neighbors for individual queries. We demonstrate that the forecasts of the ensembles improve significantly on the globally optimal single predictors.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540453758</identifier><identifier>ISBN: 354045375X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540460565</identifier><identifier>EISBN: 354046056X</identifier><identifier>DOI: 10.1007/11871842_51</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Chaotic Time Series ; Computer science; control theory; systems ; Exact sciences and technology ; Good Single Predictor ; Information systems. Data bases ; Memory organisation. Data processing ; Root Mean Square Error ; Single Predictor ; Software ; Time Series Prediction</subject><ispartof>Lecture notes in computer science, 2006, p.545-556</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-77b82f26ea5edcd6eefae3868746fcf2404b41c8882ca9960613792fc29def7d3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11871842_51$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11871842_51$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19910394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Fürnkranz, Johannes</contributor><contributor>Spiliopoulou, Myra</contributor><contributor>Scheffer, Tobias</contributor><creatorcontrib>Yankov, Dragomir</creatorcontrib><creatorcontrib>DeCoste, Dennis</creatorcontrib><creatorcontrib>Keogh, Eamonn</creatorcontrib><title>Ensembles of Nearest Neighbor Forecasts</title><title>Lecture notes in computer science</title><description>Nearest neighbor forecasting models are attractive with their simplicity and the ability to predict complex nonlinear behavior. They rely on the assumption that observations similar to the target one are also likely to have similar outcomes. A common practice in nearest neighbor model selection is to compute the globally optimal number of neighbors on a validation set, which is later applied for all incoming queries. For certain queries, however, this number may be suboptimal and forecasts that deviate a lot from the true realization could be produced. To address the problem we propose an alternative approach of training ensembles of nearest neighbor predictors that determine the best number of neighbors for individual queries. We demonstrate that the forecasts of the ensembles improve significantly on the globally optimal single predictors.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Chaotic Time Series</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Good Single Predictor</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Root Mean Square Error</subject><subject>Single Predictor</subject><subject>Software</subject><subject>Time Series Prediction</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540453758</isbn><isbn>354045375X</isbn><isbn>9783540460565</isbn><isbn>354046056X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNUD1PwzAUNF8SUcnEH8iCEEPAz98eUdUCUgULzJbjPJdA21R2Fv49RkWCW264e3dPR8gl0FugVN8BGA1GMCfhiNRWGy4FFYpKJY9JBQqg5VzYkz9Nci3NKakop6y1WvBzUuf8QQt4CROsIteLXcZtt8HcjLF5Rp8wT4WH9Xs3pmY5Jgw-T_mCnEW_yVj_8oy8LRev88d29fLwNL9ftYFZM7Vad4ZFptBL7EOvEKNHblQpUzFEVp7qBARjDAveWkUVcG1ZLNc9Rt3zGbk65O59Dn4Tk9-FIbt9GrY-fTmwFii3ovhuDr5cpN0ak-vG8TM7oO5nLPdvLP4NH41U3A</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Yankov, Dragomir</creator><creator>DeCoste, Dennis</creator><creator>Keogh, Eamonn</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Ensembles of Nearest Neighbor Forecasts</title><author>Yankov, Dragomir ; DeCoste, Dennis ; Keogh, Eamonn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-77b82f26ea5edcd6eefae3868746fcf2404b41c8882ca9960613792fc29def7d3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Chaotic Time Series</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Good Single Predictor</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Root Mean Square Error</topic><topic>Single Predictor</topic><topic>Software</topic><topic>Time Series Prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yankov, Dragomir</creatorcontrib><creatorcontrib>DeCoste, Dennis</creatorcontrib><creatorcontrib>Keogh, Eamonn</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yankov, Dragomir</au><au>DeCoste, Dennis</au><au>Keogh, Eamonn</au><au>Fürnkranz, Johannes</au><au>Spiliopoulou, Myra</au><au>Scheffer, Tobias</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Ensembles of Nearest Neighbor Forecasts</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>545</spage><epage>556</epage><pages>545-556</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540453758</isbn><isbn>354045375X</isbn><eisbn>9783540460565</eisbn><eisbn>354046056X</eisbn><abstract>Nearest neighbor forecasting models are attractive with their simplicity and the ability to predict complex nonlinear behavior. They rely on the assumption that observations similar to the target one are also likely to have similar outcomes. A common practice in nearest neighbor model selection is to compute the globally optimal number of neighbors on a validation set, which is later applied for all incoming queries. For certain queries, however, this number may be suboptimal and forecasts that deviate a lot from the true realization could be produced. To address the problem we propose an alternative approach of training ensembles of nearest neighbor predictors that determine the best number of neighbors for individual queries. We demonstrate that the forecasts of the ensembles improve significantly on the globally optimal single predictors.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11871842_51</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.545-556
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19910394
source Springer Books
subjects Applied sciences
Artificial intelligence
Chaotic Time Series
Computer science
control theory
systems
Exact sciences and technology
Good Single Predictor
Information systems. Data bases
Memory organisation. Data processing
Root Mean Square Error
Single Predictor
Software
Time Series Prediction
title Ensembles of Nearest Neighbor Forecasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Ensembles%20of%20Nearest%20Neighbor%20Forecasts&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Yankov,%20Dragomir&rft.date=2006&rft.spage=545&rft.epage=556&rft.pages=545-556&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540453758&rft.isbn_list=354045375X&rft_id=info:doi/10.1007/11871842_51&rft_dat=%3Cpascalfrancis_sprin%3E19910394%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540460565&rft.eisbn_list=354046056X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true