TildeCRF: Conditional Random Fields for Logical Sequences
Conditional Random Fields (CRFs) provide a powerful instrument for labeling sequences. So far, however, CRFs have only been considered for labeling sequences over flat alphabets. In this paper, we describe TildeCRF, the first method for training CRFs on logical sequences, i.e., sequences over an alp...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 174 |
container_title | |
container_volume | |
creator | Gutmann, Bernd Kersting, Kristian |
description | Conditional Random Fields (CRFs) provide a powerful instrument for labeling sequences. So far, however, CRFs have only been considered for labeling sequences over flat alphabets. In this paper, we describe TildeCRF, the first method for training CRFs on logical sequences, i.e., sequences over an alphabet of logical atoms. TildeCRF’s key idea is to use relational regression trees in Dietterich et al.’s gradient tree boosting approach. Thus, the CRF potential functions are represented as weighted sums of relational regression trees. Experiments show a significant improvement over established results achieved with hidden Markov models and Fisher kernels for logical sequences. |
doi_str_mv | 10.1007/11871842_20 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19910363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19910363</sourcerecordid><originalsourceid>FETCH-LOGICAL-p284t-17ba6ef131e741241fc9a3f5a67f5822aa57ab80772308ff7d15b58e86a405363</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1Loiqd-ANZGBgC9_odNhS1gFQJqZTZchK7MqRxicvAv8eoSHCXM3yfjq4OIZcINwigbhG1Qs2poXBEZpXSTHDgEoQUx2SCErFkjFcnf0wwJfQpmQADWlaKs3MyS-kN8rFcxumEVOvQd65eLe6KOg5d2Ic42L5Y2aGL22IRXN-lwsexWMZNaDN5cR-fbmhduiBn3vbJzX5zSl4X83X9WC6fH57q-2W5o5rvS1SNlc4jQ6c4Uo6-rSzzwkrlhabUWqFso0EpykB7rzoUjdBOS8tBMMmm5OrQu7MpP-BHO7Qhmd0Ytnb8MlhVCFnL3vXBSxkNGzeaJsb3ZBDMz3zm33zsG3K3Wdc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>TildeCRF: Conditional Random Fields for Logical Sequences</title><source>Springer Books</source><creator>Gutmann, Bernd ; Kersting, Kristian</creator><contributor>Fürnkranz, Johannes ; Spiliopoulou, Myra ; Scheffer, Tobias</contributor><creatorcontrib>Gutmann, Bernd ; Kersting, Kristian ; Fürnkranz, Johannes ; Spiliopoulou, Myra ; Scheffer, Tobias</creatorcontrib><description>Conditional Random Fields (CRFs) provide a powerful instrument for labeling sequences. So far, however, CRFs have only been considered for labeling sequences over flat alphabets. In this paper, we describe TildeCRF, the first method for training CRFs on logical sequences, i.e., sequences over an alphabet of logical atoms. TildeCRF’s key idea is to use relational regression trees in Dietterich et al.’s gradient tree boosting approach. Thus, the CRF potential functions are represented as weighted sums of relational regression trees. Experiments show a significant improvement over established results achieved with hidden Markov models and Fisher kernels for logical sequences.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540453758</identifier><identifier>ISBN: 354045375X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540460565</identifier><identifier>EISBN: 354046056X</identifier><identifier>DOI: 10.1007/11871842_20</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Conditional Random Field ; Exact sciences and technology ; Ground Atom ; Hide Markov Model ; Logical Sequence ; Regression Tree</subject><ispartof>Lecture notes in computer science, 2006, p.174-185</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11871842_20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11871842_20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19910363$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Fürnkranz, Johannes</contributor><contributor>Spiliopoulou, Myra</contributor><contributor>Scheffer, Tobias</contributor><creatorcontrib>Gutmann, Bernd</creatorcontrib><creatorcontrib>Kersting, Kristian</creatorcontrib><title>TildeCRF: Conditional Random Fields for Logical Sequences</title><title>Lecture notes in computer science</title><description>Conditional Random Fields (CRFs) provide a powerful instrument for labeling sequences. So far, however, CRFs have only been considered for labeling sequences over flat alphabets. In this paper, we describe TildeCRF, the first method for training CRFs on logical sequences, i.e., sequences over an alphabet of logical atoms. TildeCRF’s key idea is to use relational regression trees in Dietterich et al.’s gradient tree boosting approach. Thus, the CRF potential functions are represented as weighted sums of relational regression trees. Experiments show a significant improvement over established results achieved with hidden Markov models and Fisher kernels for logical sequences.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Conditional Random Field</subject><subject>Exact sciences and technology</subject><subject>Ground Atom</subject><subject>Hide Markov Model</subject><subject>Logical Sequence</subject><subject>Regression Tree</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540453758</isbn><isbn>354045375X</isbn><isbn>9783540460565</isbn><isbn>354046056X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkDtPwzAUhc1Loiqd-ANZGBgC9_odNhS1gFQJqZTZchK7MqRxicvAv8eoSHCXM3yfjq4OIZcINwigbhG1Qs2poXBEZpXSTHDgEoQUx2SCErFkjFcnf0wwJfQpmQADWlaKs3MyS-kN8rFcxumEVOvQd65eLe6KOg5d2Ic42L5Y2aGL22IRXN-lwsexWMZNaDN5cR-fbmhduiBn3vbJzX5zSl4X83X9WC6fH57q-2W5o5rvS1SNlc4jQ6c4Uo6-rSzzwkrlhabUWqFso0EpykB7rzoUjdBOS8tBMMmm5OrQu7MpP-BHO7Qhmd0Ytnb8MlhVCFnL3vXBSxkNGzeaJsb3ZBDMz3zm33zsG3K3Wdc</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Gutmann, Bernd</creator><creator>Kersting, Kristian</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20060101</creationdate><title>TildeCRF: Conditional Random Fields for Logical Sequences</title><author>Gutmann, Bernd ; Kersting, Kristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p284t-17ba6ef131e741241fc9a3f5a67f5822aa57ab80772308ff7d15b58e86a405363</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Conditional Random Field</topic><topic>Exact sciences and technology</topic><topic>Ground Atom</topic><topic>Hide Markov Model</topic><topic>Logical Sequence</topic><topic>Regression Tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutmann, Bernd</creatorcontrib><creatorcontrib>Kersting, Kristian</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutmann, Bernd</au><au>Kersting, Kristian</au><au>Fürnkranz, Johannes</au><au>Spiliopoulou, Myra</au><au>Scheffer, Tobias</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>TildeCRF: Conditional Random Fields for Logical Sequences</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006-01-01</date><risdate>2006</risdate><spage>174</spage><epage>185</epage><pages>174-185</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540453758</isbn><isbn>354045375X</isbn><eisbn>9783540460565</eisbn><eisbn>354046056X</eisbn><abstract>Conditional Random Fields (CRFs) provide a powerful instrument for labeling sequences. So far, however, CRFs have only been considered for labeling sequences over flat alphabets. In this paper, we describe TildeCRF, the first method for training CRFs on logical sequences, i.e., sequences over an alphabet of logical atoms. TildeCRF’s key idea is to use relational regression trees in Dietterich et al.’s gradient tree boosting approach. Thus, the CRF potential functions are represented as weighted sums of relational regression trees. Experiments show a significant improvement over established results achieved with hidden Markov models and Fisher kernels for logical sequences.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11871842_20</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.174-185 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19910363 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Conditional Random Field Exact sciences and technology Ground Atom Hide Markov Model Logical Sequence Regression Tree |
title | TildeCRF: Conditional Random Fields for Logical Sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=TildeCRF:%20Conditional%20Random%20Fields%20for%20Logical%20Sequences&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Gutmann,%20Bernd&rft.date=2006-01-01&rft.spage=174&rft.epage=185&rft.pages=174-185&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540453758&rft.isbn_list=354045375X&rft_id=info:doi/10.1007/11871842_20&rft_dat=%3Cpascalfrancis_sprin%3E19910363%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540460565&rft.eisbn_list=354046056X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |