Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms

In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cococcioni, Marco, Guasqui, Pierluigi, Lazzerini, Beatrice, Marcelloni, Francesco
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue
container_start_page 172
container_title
container_volume
creator Cococcioni, Marco
Guasqui, Pierluigi
Lazzerini, Beatrice
Marcelloni, Francesco
description In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules.
doi_str_mv 10.1007/11676935_21
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19909867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19909867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-acac000fb686f8c9c3ea54022421cd10da00abb1aeca9763c3abb198cf75c9743</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxc0_iVI68QW8MDAEfHbixGOpaKlUxNAyMEUXxwlu06SKHaT205OqCHHL6fR-Or33CLkD9giMxU8AMpZKRCmHM3IjopAJHgkG52QAEiAQIlQXfwJXySUZMMF4oOJQXJORc2vWj4A4ScSAfM5zU3tbWI3eNjVtCrrCDZY2WHalqRs67Q6HPV3unTdbR5_RmZz23FtXeRs02dpob78NnZnaeKvpuCqb1vqvrbslVwVWzox-95B8TF9Wk9dg8T6bT8aLQHMJPkCNuvdTZDKRRaKVFgZ775yHHHQOLEfGMMsAjUYVS6HF8VKJLuJIHzMNyf3p7w6dxqposdbWpbvWbrHdp6AUU4mMe-7hxLleqkvTplnTbFwKLD0Wm_4rVvwAHRVmkQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</title><source>Springer Books</source><creator>Cococcioni, Marco ; Guasqui, Pierluigi ; Lazzerini, Beatrice ; Marcelloni, Francesco</creator><contributor>Bloch, Isabelle ; Tettamanzi, Andrea G. B. ; Petrosino, Alfredo</contributor><creatorcontrib>Cococcioni, Marco ; Guasqui, Pierluigi ; Lazzerini, Beatrice ; Marcelloni, Francesco ; Bloch, Isabelle ; Tettamanzi, Andrea G. B. ; Petrosino, Alfredo</creatorcontrib><description>In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540325298</identifier><identifier>ISBN: 9783540325291</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540325301</identifier><identifier>EISBN: 9783540325307</identifier><identifier>DOI: 10.1007/11676935_21</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Logical, boolean and switching functions ; Theoretical computing</subject><ispartof>Fuzzy Logic and Applications, 2006, p.172-177</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-acac000fb686f8c9c3ea54022421cd10da00abb1aeca9763c3abb198cf75c9743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11676935_21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11676935_21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19909867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bloch, Isabelle</contributor><contributor>Tettamanzi, Andrea G. B.</contributor><contributor>Petrosino, Alfredo</contributor><creatorcontrib>Cococcioni, Marco</creatorcontrib><creatorcontrib>Guasqui, Pierluigi</creatorcontrib><creatorcontrib>Lazzerini, Beatrice</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><title>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</title><title>Fuzzy Logic and Applications</title><description>In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540325298</isbn><isbn>9783540325291</isbn><isbn>3540325301</isbn><isbn>9783540325307</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD9PwzAQxc0_iVI68QW8MDAEfHbixGOpaKlUxNAyMEUXxwlu06SKHaT205OqCHHL6fR-Or33CLkD9giMxU8AMpZKRCmHM3IjopAJHgkG52QAEiAQIlQXfwJXySUZMMF4oOJQXJORc2vWj4A4ScSAfM5zU3tbWI3eNjVtCrrCDZY2WHalqRs67Q6HPV3unTdbR5_RmZz23FtXeRs02dpob78NnZnaeKvpuCqb1vqvrbslVwVWzox-95B8TF9Wk9dg8T6bT8aLQHMJPkCNuvdTZDKRRaKVFgZ775yHHHQOLEfGMMsAjUYVS6HF8VKJLuJIHzMNyf3p7w6dxqposdbWpbvWbrHdp6AUU4mMe-7hxLleqkvTplnTbFwKLD0Wm_4rVvwAHRVmkQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Cococcioni, Marco</creator><creator>Guasqui, Pierluigi</creator><creator>Lazzerini, Beatrice</creator><creator>Marcelloni, Francesco</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</title><author>Cococcioni, Marco ; Guasqui, Pierluigi ; Lazzerini, Beatrice ; Marcelloni, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-acac000fb686f8c9c3ea54022421cd10da00abb1aeca9763c3abb198cf75c9743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cococcioni, Marco</creatorcontrib><creatorcontrib>Guasqui, Pierluigi</creatorcontrib><creatorcontrib>Lazzerini, Beatrice</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cococcioni, Marco</au><au>Guasqui, Pierluigi</au><au>Lazzerini, Beatrice</au><au>Marcelloni, Francesco</au><au>Bloch, Isabelle</au><au>Tettamanzi, Andrea G. B.</au><au>Petrosino, Alfredo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</atitle><btitle>Fuzzy Logic and Applications</btitle><date>2006</date><risdate>2006</risdate><spage>172</spage><epage>177</epage><pages>172-177</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540325298</isbn><isbn>9783540325291</isbn><eisbn>3540325301</eisbn><eisbn>9783540325307</eisbn><abstract>In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11676935_21</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Fuzzy Logic and Applications, 2006, p.172-177
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19909867
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Logical, boolean and switching functions
Theoretical computing
title Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20Takagi-Sugeno%20Fuzzy%20Systems%20Based%20on%20Multi-objective%20Genetic%20Algorithms&rft.btitle=Fuzzy%20Logic%20and%20Applications&rft.au=Cococcioni,%20Marco&rft.date=2006&rft.spage=172&rft.epage=177&rft.pages=172-177&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540325298&rft.isbn_list=9783540325291&rft_id=info:doi/10.1007/11676935_21&rft_dat=%3Cpascalfrancis_sprin%3E19909867%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540325301&rft.eisbn_list=9783540325307&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true