Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms
In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different n...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | |
container_start_page | 172 |
container_title | |
container_volume | |
creator | Cococcioni, Marco Guasqui, Pierluigi Lazzerini, Beatrice Marcelloni, Francesco |
description | In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules. |
doi_str_mv | 10.1007/11676935_21 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19909867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19909867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-acac000fb686f8c9c3ea54022421cd10da00abb1aeca9763c3abb198cf75c9743</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxc0_iVI68QW8MDAEfHbixGOpaKlUxNAyMEUXxwlu06SKHaT205OqCHHL6fR-Or33CLkD9giMxU8AMpZKRCmHM3IjopAJHgkG52QAEiAQIlQXfwJXySUZMMF4oOJQXJORc2vWj4A4ScSAfM5zU3tbWI3eNjVtCrrCDZY2WHalqRs67Q6HPV3unTdbR5_RmZz23FtXeRs02dpob78NnZnaeKvpuCqb1vqvrbslVwVWzox-95B8TF9Wk9dg8T6bT8aLQHMJPkCNuvdTZDKRRaKVFgZ775yHHHQOLEfGMMsAjUYVS6HF8VKJLuJIHzMNyf3p7w6dxqposdbWpbvWbrHdp6AUU4mMe-7hxLleqkvTplnTbFwKLD0Wm_4rVvwAHRVmkQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</title><source>Springer Books</source><creator>Cococcioni, Marco ; Guasqui, Pierluigi ; Lazzerini, Beatrice ; Marcelloni, Francesco</creator><contributor>Bloch, Isabelle ; Tettamanzi, Andrea G. B. ; Petrosino, Alfredo</contributor><creatorcontrib>Cococcioni, Marco ; Guasqui, Pierluigi ; Lazzerini, Beatrice ; Marcelloni, Francesco ; Bloch, Isabelle ; Tettamanzi, Andrea G. B. ; Petrosino, Alfredo</creatorcontrib><description>In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540325298</identifier><identifier>ISBN: 9783540325291</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540325301</identifier><identifier>EISBN: 9783540325307</identifier><identifier>DOI: 10.1007/11676935_21</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Logical, boolean and switching functions ; Theoretical computing</subject><ispartof>Fuzzy Logic and Applications, 2006, p.172-177</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-acac000fb686f8c9c3ea54022421cd10da00abb1aeca9763c3abb198cf75c9743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11676935_21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11676935_21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19909867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bloch, Isabelle</contributor><contributor>Tettamanzi, Andrea G. B.</contributor><contributor>Petrosino, Alfredo</contributor><creatorcontrib>Cococcioni, Marco</creatorcontrib><creatorcontrib>Guasqui, Pierluigi</creatorcontrib><creatorcontrib>Lazzerini, Beatrice</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><title>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</title><title>Fuzzy Logic and Applications</title><description>In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540325298</isbn><isbn>9783540325291</isbn><isbn>3540325301</isbn><isbn>9783540325307</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD9PwzAQxc0_iVI68QW8MDAEfHbixGOpaKlUxNAyMEUXxwlu06SKHaT205OqCHHL6fR-Or33CLkD9giMxU8AMpZKRCmHM3IjopAJHgkG52QAEiAQIlQXfwJXySUZMMF4oOJQXJORc2vWj4A4ScSAfM5zU3tbWI3eNjVtCrrCDZY2WHalqRs67Q6HPV3unTdbR5_RmZz23FtXeRs02dpob78NnZnaeKvpuCqb1vqvrbslVwVWzox-95B8TF9Wk9dg8T6bT8aLQHMJPkCNuvdTZDKRRaKVFgZ775yHHHQOLEfGMMsAjUYVS6HF8VKJLuJIHzMNyf3p7w6dxqposdbWpbvWbrHdp6AUU4mMe-7hxLleqkvTplnTbFwKLD0Wm_4rVvwAHRVmkQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Cococcioni, Marco</creator><creator>Guasqui, Pierluigi</creator><creator>Lazzerini, Beatrice</creator><creator>Marcelloni, Francesco</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</title><author>Cococcioni, Marco ; Guasqui, Pierluigi ; Lazzerini, Beatrice ; Marcelloni, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-acac000fb686f8c9c3ea54022421cd10da00abb1aeca9763c3abb198cf75c9743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cococcioni, Marco</creatorcontrib><creatorcontrib>Guasqui, Pierluigi</creatorcontrib><creatorcontrib>Lazzerini, Beatrice</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cococcioni, Marco</au><au>Guasqui, Pierluigi</au><au>Lazzerini, Beatrice</au><au>Marcelloni, Francesco</au><au>Bloch, Isabelle</au><au>Tettamanzi, Andrea G. B.</au><au>Petrosino, Alfredo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms</atitle><btitle>Fuzzy Logic and Applications</btitle><date>2006</date><risdate>2006</risdate><spage>172</spage><epage>177</epage><pages>172-177</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540325298</isbn><isbn>9783540325291</isbn><eisbn>3540325301</eisbn><eisbn>9783540325307</eisbn><abstract>In this paper we exploit multi-objective genetic algorithms to identify Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and low complexity. Using this approach, we approximate the Pareto optimal front by first identifying TS models with different structures (i.e., different number of rules and input variables), and then performing a local optimization of these models using an ANFIS learning approach. The results obtained allow determining a posteriori the optimal TS system for the specific application. Main features of our approach are selection of the input variables and automatic determination of the number of rules.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11676935_21</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Fuzzy Logic and Applications, 2006, p.172-177 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19909867 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Logical, boolean and switching functions Theoretical computing |
title | Identification of Takagi-Sugeno Fuzzy Systems Based on Multi-objective Genetic Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20Takagi-Sugeno%20Fuzzy%20Systems%20Based%20on%20Multi-objective%20Genetic%20Algorithms&rft.btitle=Fuzzy%20Logic%20and%20Applications&rft.au=Cococcioni,%20Marco&rft.date=2006&rft.spage=172&rft.epage=177&rft.pages=172-177&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540325298&rft.isbn_list=9783540325291&rft_id=info:doi/10.1007/11676935_21&rft_dat=%3Cpascalfrancis_sprin%3E19909867%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540325301&rft.eisbn_list=9783540325307&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |