Acquisition of Articulated Human Body Models Using Multiple Cameras

Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sundaresan, Aravind, Chellappa, Rama
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue
container_start_page 78
container_title
container_volume
creator Sundaresan, Aravind
Chellappa, Rama
description Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels.
doi_str_mv 10.1007/11789239_9
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19689395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19689395</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-27ccd05fbe1f3ef5735e51122cd70d773c76e312a5e360085b559b02cb2fdce53</originalsourceid><addsrcrecordid>eNpFkL1OwzAYRc2fRCldeAIvSCwBf_7qOB5LBBSpFQuV2CzHP5VFmoQ4Gfr2FBWp0x3O1dXVIeQO2CMwJp8AZKE4Kq3OyA2KOcOcIS_OyQRygAxxri5OAL4uyYQh45mSc7wms5RixRgoJbGQE1Iu7M8YUxxi29A20EU_RDvWZvCOLsedaehz6_Z03TpfJ7pJsdnS9VgPsas9Lc3O9ybdkqtg6uRn_zklm9eXz3KZrT7e3svFKus4FEPGpbWOiVB5COiDkCi8AODcOsmclGhl7hG4Ef7wnBWiEkJVjNuKB2e9wCm5P-52JllTh940Nibd9XFn-r0GlRcK1V_v4dhLB9Rsfa-rtv1OGpj-M6hPBvEXiC1dgg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Acquisition of Articulated Human Body Models Using Multiple Cameras</title><source>Springer Books</source><creator>Sundaresan, Aravind ; Chellappa, Rama</creator><contributor>Perales, Francisco J. ; Fisher, Robert B.</contributor><creatorcontrib>Sundaresan, Aravind ; Chellappa, Rama ; Perales, Francisco J. ; Fisher, Robert B.</creatorcontrib><description>Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354036031X</identifier><identifier>ISBN: 9783540360315</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540360328</identifier><identifier>EISBN: 9783540360322</identifier><identifier>DOI: 10.1007/11789239_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Coordinate Frame ; Exact sciences and technology ; Fill Ratio ; High Dimensional Space ; Joint Angle ; Motion Capture ; Pattern recognition. Digital image processing. Computational geometry ; Software</subject><ispartof>Articulated Motion and Deformable Objects, 2006, p.78-89</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11789239_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11789239_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19689395$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Perales, Francisco J.</contributor><contributor>Fisher, Robert B.</contributor><creatorcontrib>Sundaresan, Aravind</creatorcontrib><creatorcontrib>Chellappa, Rama</creatorcontrib><title>Acquisition of Articulated Human Body Models Using Multiple Cameras</title><title>Articulated Motion and Deformable Objects</title><description>Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Coordinate Frame</subject><subject>Exact sciences and technology</subject><subject>Fill Ratio</subject><subject>High Dimensional Space</subject><subject>Joint Angle</subject><subject>Motion Capture</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354036031X</isbn><isbn>9783540360315</isbn><isbn>3540360328</isbn><isbn>9783540360322</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkL1OwzAYRc2fRCldeAIvSCwBf_7qOB5LBBSpFQuV2CzHP5VFmoQ4Gfr2FBWp0x3O1dXVIeQO2CMwJp8AZKE4Kq3OyA2KOcOcIS_OyQRygAxxri5OAL4uyYQh45mSc7wms5RixRgoJbGQE1Iu7M8YUxxi29A20EU_RDvWZvCOLsedaehz6_Z03TpfJ7pJsdnS9VgPsas9Lc3O9ybdkqtg6uRn_zklm9eXz3KZrT7e3svFKus4FEPGpbWOiVB5COiDkCi8AODcOsmclGhl7hG4Ef7wnBWiEkJVjNuKB2e9wCm5P-52JllTh940Nibd9XFn-r0GlRcK1V_v4dhLB9Rsfa-rtv1OGpj-M6hPBvEXiC1dgg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sundaresan, Aravind</creator><creator>Chellappa, Rama</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Acquisition of Articulated Human Body Models Using Multiple Cameras</title><author>Sundaresan, Aravind ; Chellappa, Rama</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-27ccd05fbe1f3ef5735e51122cd70d773c76e312a5e360085b559b02cb2fdce53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Coordinate Frame</topic><topic>Exact sciences and technology</topic><topic>Fill Ratio</topic><topic>High Dimensional Space</topic><topic>Joint Angle</topic><topic>Motion Capture</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaresan, Aravind</creatorcontrib><creatorcontrib>Chellappa, Rama</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaresan, Aravind</au><au>Chellappa, Rama</au><au>Perales, Francisco J.</au><au>Fisher, Robert B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acquisition of Articulated Human Body Models Using Multiple Cameras</atitle><btitle>Articulated Motion and Deformable Objects</btitle><date>2006</date><risdate>2006</risdate><spage>78</spage><epage>89</epage><pages>78-89</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354036031X</isbn><isbn>9783540360315</isbn><eisbn>3540360328</eisbn><eisbn>9783540360322</eisbn><abstract>Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11789239_9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Articulated Motion and Deformable Objects, 2006, p.78-89
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19689395
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Coordinate Frame
Exact sciences and technology
Fill Ratio
High Dimensional Space
Joint Angle
Motion Capture
Pattern recognition. Digital image processing. Computational geometry
Software
title Acquisition of Articulated Human Body Models Using Multiple Cameras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acquisition%20of%20Articulated%20Human%20Body%20Models%20Using%20Multiple%20Cameras&rft.btitle=Articulated%20Motion%20and%20Deformable%20Objects&rft.au=Sundaresan,%20Aravind&rft.date=2006&rft.spage=78&rft.epage=89&rft.pages=78-89&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354036031X&rft.isbn_list=9783540360315&rft_id=info:doi/10.1007/11789239_9&rft_dat=%3Cpascalfrancis_sprin%3E19689395%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540360328&rft.eisbn_list=9783540360322&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true