Acquisition of Articulated Human Body Models Using Multiple Cameras
Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-qua...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | |
container_volume | |
creator | Sundaresan, Aravind Chellappa, Rama |
description | Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels. |
doi_str_mv | 10.1007/11789239_9 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19689395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19689395</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-27ccd05fbe1f3ef5735e51122cd70d773c76e312a5e360085b559b02cb2fdce53</originalsourceid><addsrcrecordid>eNpFkL1OwzAYRc2fRCldeAIvSCwBf_7qOB5LBBSpFQuV2CzHP5VFmoQ4Gfr2FBWp0x3O1dXVIeQO2CMwJp8AZKE4Kq3OyA2KOcOcIS_OyQRygAxxri5OAL4uyYQh45mSc7wms5RixRgoJbGQE1Iu7M8YUxxi29A20EU_RDvWZvCOLsedaehz6_Z03TpfJ7pJsdnS9VgPsas9Lc3O9ybdkqtg6uRn_zklm9eXz3KZrT7e3svFKus4FEPGpbWOiVB5COiDkCi8AODcOsmclGhl7hG4Ef7wnBWiEkJVjNuKB2e9wCm5P-52JllTh940Nibd9XFn-r0GlRcK1V_v4dhLB9Rsfa-rtv1OGpj-M6hPBvEXiC1dgg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Acquisition of Articulated Human Body Models Using Multiple Cameras</title><source>Springer Books</source><creator>Sundaresan, Aravind ; Chellappa, Rama</creator><contributor>Perales, Francisco J. ; Fisher, Robert B.</contributor><creatorcontrib>Sundaresan, Aravind ; Chellappa, Rama ; Perales, Francisco J. ; Fisher, Robert B.</creatorcontrib><description>Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354036031X</identifier><identifier>ISBN: 9783540360315</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540360328</identifier><identifier>EISBN: 9783540360322</identifier><identifier>DOI: 10.1007/11789239_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Coordinate Frame ; Exact sciences and technology ; Fill Ratio ; High Dimensional Space ; Joint Angle ; Motion Capture ; Pattern recognition. Digital image processing. Computational geometry ; Software</subject><ispartof>Articulated Motion and Deformable Objects, 2006, p.78-89</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11789239_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11789239_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19689395$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Perales, Francisco J.</contributor><contributor>Fisher, Robert B.</contributor><creatorcontrib>Sundaresan, Aravind</creatorcontrib><creatorcontrib>Chellappa, Rama</creatorcontrib><title>Acquisition of Articulated Human Body Models Using Multiple Cameras</title><title>Articulated Motion and Deformable Objects</title><description>Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Coordinate Frame</subject><subject>Exact sciences and technology</subject><subject>Fill Ratio</subject><subject>High Dimensional Space</subject><subject>Joint Angle</subject><subject>Motion Capture</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354036031X</isbn><isbn>9783540360315</isbn><isbn>3540360328</isbn><isbn>9783540360322</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkL1OwzAYRc2fRCldeAIvSCwBf_7qOB5LBBSpFQuV2CzHP5VFmoQ4Gfr2FBWp0x3O1dXVIeQO2CMwJp8AZKE4Kq3OyA2KOcOcIS_OyQRygAxxri5OAL4uyYQh45mSc7wms5RixRgoJbGQE1Iu7M8YUxxi29A20EU_RDvWZvCOLsedaehz6_Z03TpfJ7pJsdnS9VgPsas9Lc3O9ybdkqtg6uRn_zklm9eXz3KZrT7e3svFKus4FEPGpbWOiVB5COiDkCi8AODcOsmclGhl7hG4Ef7wnBWiEkJVjNuKB2e9wCm5P-52JllTh940Nibd9XFn-r0GlRcK1V_v4dhLB9Rsfa-rtv1OGpj-M6hPBvEXiC1dgg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sundaresan, Aravind</creator><creator>Chellappa, Rama</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Acquisition of Articulated Human Body Models Using Multiple Cameras</title><author>Sundaresan, Aravind ; Chellappa, Rama</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-27ccd05fbe1f3ef5735e51122cd70d773c76e312a5e360085b559b02cb2fdce53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Coordinate Frame</topic><topic>Exact sciences and technology</topic><topic>Fill Ratio</topic><topic>High Dimensional Space</topic><topic>Joint Angle</topic><topic>Motion Capture</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaresan, Aravind</creatorcontrib><creatorcontrib>Chellappa, Rama</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaresan, Aravind</au><au>Chellappa, Rama</au><au>Perales, Francisco J.</au><au>Fisher, Robert B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acquisition of Articulated Human Body Models Using Multiple Cameras</atitle><btitle>Articulated Motion and Deformable Objects</btitle><date>2006</date><risdate>2006</risdate><spage>78</spage><epage>89</epage><pages>78-89</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354036031X</isbn><isbn>9783540360315</isbn><eisbn>3540360328</eisbn><eisbn>9783540360322</eisbn><abstract>Motion capture is an important application in different areas such as biomechanics, computer animation, and human-computer interaction. Current motion capture methods typically use human body models in order to guide pose estimation and tracking. We model the human body as a set of tapered super-quadrics connected in an articulated structure and propose an algorithm to automatically estimate the parameters of the model using video sequences obtained from multiple calibrated cameras. Our method is based on the fact that the human body is constructed of several articulated chains that can be visualised as essentially 1-D segments embedded in 3-D space and connected at specific joint locations. The proposed method first computes a voxel representation from the images and maps the voxels to a high dimensional space in order to extract the 1-D structure. A bottom-up approach is then suggested in order to build a parametric (spline-based) representation of a general articulated body in the high dimensional space followed by a top-down probabilistic approach that registers the segments to the known human body model. We then present an algorithm to estimate the parameters of our model using the segmented and registered voxels.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11789239_9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Articulated Motion and Deformable Objects, 2006, p.78-89 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19689395 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Computer systems and distributed systems. User interface Coordinate Frame Exact sciences and technology Fill Ratio High Dimensional Space Joint Angle Motion Capture Pattern recognition. Digital image processing. Computational geometry Software |
title | Acquisition of Articulated Human Body Models Using Multiple Cameras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acquisition%20of%20Articulated%20Human%20Body%20Models%20Using%20Multiple%20Cameras&rft.btitle=Articulated%20Motion%20and%20Deformable%20Objects&rft.au=Sundaresan,%20Aravind&rft.date=2006&rft.spage=78&rft.epage=89&rft.pages=78-89&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354036031X&rft.isbn_list=9783540360315&rft_id=info:doi/10.1007/11789239_9&rft_dat=%3Cpascalfrancis_sprin%3E19689395%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540360328&rft.eisbn_list=9783540360322&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |