A Fast Random Sampling Algorithm for Sparsifying Matrices

We describe a simple random-sampling based procedure for producing sparse matrix approximations. Our procedure and analysis are extremely simple: the analysis uses nothing more than the Chernoff-Hoeffding bounds. Despite the simplicity, the approximation is comparable and sometimes better than previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arora, Sanjeev, Hazan, Elad, Kale, Satyen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 272
container_title
container_volume
creator Arora, Sanjeev
Hazan, Elad
Kale, Satyen
description We describe a simple random-sampling based procedure for producing sparse matrix approximations. Our procedure and analysis are extremely simple: the analysis uses nothing more than the Chernoff-Hoeffding bounds. Despite the simplicity, the approximation is comparable and sometimes better than previous work. Our algorithm computes the sparse matrix approximation in a single pass over the data. Further, most of the entries in the output matrix are quantized, and can be succinctly represented by a bit vector, thus leading to much savings in space.
doi_str_mv 10.1007/11830924_26
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19689338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19689338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-eb7ad783d9e5ef8d3f6e6dbe85b4617acfcfe813f71d297706d915dd2cccfb5e3</originalsourceid><addsrcrecordid>eNpNkLlOAzEURc0mkYRU_MA0FBQD79kzXsooIoAUhESgtjxewsBssqfJ35MoIFHd4lxdXR1CrhHuEEDcI0oGihaa8hMyZWUBTEJRwimZIEfMGSvUGZkrIf9Ywc7JBBjQXImCXZJpSl8AQIWiE6IW2cqkMXsznevbbGPaoam7bbZotn2sx882C33MNoOJqQ67A3kxY6ytT1fkIpgm-flvzsjH6uF9-ZSvXx-fl4t1binHMfeVMG5_xilf-iAdC9xzV3lZVgVHYWywwUtkQaCjSgjgTmHpHLXWhqr0bEZujruDSdY0IZrO1kkPsW5N3GlUXCrG5L53e-ylPeq2Puqq77-TRtAHcfqfOPYD_AFbFQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Fast Random Sampling Algorithm for Sparsifying Matrices</title><source>Springer Books</source><creator>Arora, Sanjeev ; Hazan, Elad ; Kale, Satyen</creator><contributor>Zwick, Uri ; Jansen, Klaus ; Díaz, Josep ; Rolim, José D. P.</contributor><creatorcontrib>Arora, Sanjeev ; Hazan, Elad ; Kale, Satyen ; Zwick, Uri ; Jansen, Klaus ; Díaz, Josep ; Rolim, José D. P.</creatorcontrib><description>We describe a simple random-sampling based procedure for producing sparse matrix approximations. Our procedure and analysis are extremely simple: the analysis uses nothing more than the Chernoff-Hoeffding bounds. Despite the simplicity, the approximation is comparable and sometimes better than previous work. Our algorithm computes the sparse matrix approximation in a single pass over the data. Further, most of the entries in the output matrix are quantized, and can be succinctly represented by a bit vector, thus leading to much savings in space.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540380443</identifier><identifier>ISBN: 3540380442</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540380450</identifier><identifier>EISBN: 9783540380450</identifier><identifier>DOI: 10.1007/11830924_26</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Eigenvector Computation ; Error Parameter ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Input Matrix ; Lanczos Iteration ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Operational research and scientific management ; Operational research. Management science ; Sciences and techniques of general use ; Unit Eigenvector</subject><ispartof>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2006, p.272-279</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-eb7ad783d9e5ef8d3f6e6dbe85b4617acfcfe813f71d297706d915dd2cccfb5e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11830924_26$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11830924_26$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27908,38238,41425,42494</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19689338$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zwick, Uri</contributor><contributor>Jansen, Klaus</contributor><contributor>Díaz, Josep</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Arora, Sanjeev</creatorcontrib><creatorcontrib>Hazan, Elad</creatorcontrib><creatorcontrib>Kale, Satyen</creatorcontrib><title>A Fast Random Sampling Algorithm for Sparsifying Matrices</title><title>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques</title><description>We describe a simple random-sampling based procedure for producing sparse matrix approximations. Our procedure and analysis are extremely simple: the analysis uses nothing more than the Chernoff-Hoeffding bounds. Despite the simplicity, the approximation is comparable and sometimes better than previous work. Our algorithm computes the sparse matrix approximation in a single pass over the data. Further, most of the entries in the output matrix are quantized, and can be succinctly represented by a bit vector, thus leading to much savings in space.</description><subject>Applied sciences</subject><subject>Eigenvector Computation</subject><subject>Error Parameter</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Input Matrix</subject><subject>Lanczos Iteration</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Sciences and techniques of general use</subject><subject>Unit Eigenvector</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540380443</isbn><isbn>3540380442</isbn><isbn>3540380450</isbn><isbn>9783540380450</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkLlOAzEURc0mkYRU_MA0FBQD79kzXsooIoAUhESgtjxewsBssqfJ35MoIFHd4lxdXR1CrhHuEEDcI0oGihaa8hMyZWUBTEJRwimZIEfMGSvUGZkrIf9Ywc7JBBjQXImCXZJpSl8AQIWiE6IW2cqkMXsznevbbGPaoam7bbZotn2sx882C33MNoOJqQ67A3kxY6ytT1fkIpgm-flvzsjH6uF9-ZSvXx-fl4t1binHMfeVMG5_xilf-iAdC9xzV3lZVgVHYWywwUtkQaCjSgjgTmHpHLXWhqr0bEZujruDSdY0IZrO1kkPsW5N3GlUXCrG5L53e-ylPeq2Puqq77-TRtAHcfqfOPYD_AFbFQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Arora, Sanjeev</creator><creator>Hazan, Elad</creator><creator>Kale, Satyen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Fast Random Sampling Algorithm for Sparsifying Matrices</title><author>Arora, Sanjeev ; Hazan, Elad ; Kale, Satyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-eb7ad783d9e5ef8d3f6e6dbe85b4617acfcfe813f71d297706d915dd2cccfb5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Eigenvector Computation</topic><topic>Error Parameter</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Input Matrix</topic><topic>Lanczos Iteration</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Sciences and techniques of general use</topic><topic>Unit Eigenvector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arora, Sanjeev</creatorcontrib><creatorcontrib>Hazan, Elad</creatorcontrib><creatorcontrib>Kale, Satyen</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Sanjeev</au><au>Hazan, Elad</au><au>Kale, Satyen</au><au>Zwick, Uri</au><au>Jansen, Klaus</au><au>Díaz, Josep</au><au>Rolim, José D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Fast Random Sampling Algorithm for Sparsifying Matrices</atitle><btitle>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques</btitle><date>2006</date><risdate>2006</risdate><spage>272</spage><epage>279</epage><pages>272-279</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540380443</isbn><isbn>3540380442</isbn><eisbn>3540380450</eisbn><eisbn>9783540380450</eisbn><abstract>We describe a simple random-sampling based procedure for producing sparse matrix approximations. Our procedure and analysis are extremely simple: the analysis uses nothing more than the Chernoff-Hoeffding bounds. Despite the simplicity, the approximation is comparable and sometimes better than previous work. Our algorithm computes the sparse matrix approximation in a single pass over the data. Further, most of the entries in the output matrix are quantized, and can be succinctly represented by a bit vector, thus leading to much savings in space.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11830924_26</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2006, p.272-279
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19689338
source Springer Books
subjects Applied sciences
Eigenvector Computation
Error Parameter
Exact sciences and technology
Flows in networks. Combinatorial problems
Input Matrix
Lanczos Iteration
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Operational research and scientific management
Operational research. Management science
Sciences and techniques of general use
Unit Eigenvector
title A Fast Random Sampling Algorithm for Sparsifying Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Fast%20Random%20Sampling%20Algorithm%20for%20Sparsifying%20Matrices&rft.btitle=Approximation,%20Randomization,%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Arora,%20Sanjeev&rft.date=2006&rft.spage=272&rft.epage=279&rft.pages=272-279&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540380443&rft.isbn_list=3540380442&rft_id=info:doi/10.1007/11830924_26&rft_dat=%3Cpascalfrancis_sprin%3E19689338%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540380450&rft.eisbn_list=9783540380450&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true