Discovery of Temporal Frequent Patterns Using TFP-Tree
Mining temporal frequent patterns in transaction databases, time-series databases, and many other kinds of databases have been widely studied in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | |
container_start_page | 349 |
container_title | |
container_volume | |
creator | Jin, Long Lee, Yongmi Seo, Sungbo Ryu, Keun Ho |
description | Mining temporal frequent patterns in transaction databases, time-series databases, and many other kinds of databases have been widely studied in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and long patterns. In this paper, we propose an efficient temporal frequent pattern mining method using the TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (i) one can scan the transaction only once for reducing significantly the I/O cost; (ii) one can store all transactions in leaf nodes but only save the star calendar patterns in the internal nodes. So we can save a large amount of memory. Moreover, we divide the transactions into many partitions by maximum size domain which significantly saves the memory; (iii) we efficiently discover each star calendar pattern in internal node using the frequent calendar patterns of leaf node. Thus we can reduce significantly the computational time. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the classical frequent pattern mining algorithms. |
doi_str_mv | 10.1007/11775300_30 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19689189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19689189</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-bf1e39f0ac8e4c794a1adfd4f1b766f337b2d7b564ba6d046d9e557d3fec20823</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1LopRO_IEsDAyBe339iEdUKCBVokM6R05iV4E2CXZA6r8nqCBxljOcT2f4GLtCuEUAfYeotSSAguCIXZAUQJJzBcdsggoxJRLmhM2Mzv42aU7ZBAh4arSgczaL8Q3GECrI5ISphyZW3ZcL-6TzSe52fRfsNlkE9_Hp2iFZ2WFwoY3JOjbtJskXqzQPzl2yM2-30c1-e8rWi8d8_pwuX59e5vfLtOdohrT06Mh4sFXmRKWNsGhrXwuPpVbKE-mS17qUSpRW1SBUbZyUuibvKg4Zpym7Pvz2NlZ264NtqyYWfWh2NuwLNCozmJmRuzlwcZzajQtF2XXvsUAofsQV_8TRNzoeWao</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discovery of Temporal Frequent Patterns Using TFP-Tree</title><source>Springer Books</source><creator>Jin, Long ; Lee, Yongmi ; Seo, Sungbo ; Ryu, Keun Ho</creator><contributor>Kitsuregawa, Masaru ; Leong, Hong Va ; Yu, Jeffrey Xu</contributor><creatorcontrib>Jin, Long ; Lee, Yongmi ; Seo, Sungbo ; Ryu, Keun Ho ; Kitsuregawa, Masaru ; Leong, Hong Va ; Yu, Jeffrey Xu</creatorcontrib><description>Mining temporal frequent patterns in transaction databases, time-series databases, and many other kinds of databases have been widely studied in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and long patterns. In this paper, we propose an efficient temporal frequent pattern mining method using the TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (i) one can scan the transaction only once for reducing significantly the I/O cost; (ii) one can store all transactions in leaf nodes but only save the star calendar patterns in the internal nodes. So we can save a large amount of memory. Moreover, we divide the transactions into many partitions by maximum size domain which significantly saves the memory; (iii) we efficiently discover each star calendar pattern in internal node using the frequent calendar patterns of leaf node. Thus we can reduce significantly the computational time. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the classical frequent pattern mining algorithms.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540352259</identifier><identifier>ISBN: 3540352252</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540352260</identifier><identifier>EISBN: 9783540352266</identifier><identifier>DOI: 10.1007/11775300_30</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Association Rule ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Frequent Itemsets ; Frequent Pattern ; Information systems. Data bases ; Internal Node ; Leaf Node ; Memory organisation. Data processing ; Software</subject><ispartof>Advances in Web-Age Information Management, 2006, p.349-361</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11775300_30$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11775300_30$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19689189$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kitsuregawa, Masaru</contributor><contributor>Leong, Hong Va</contributor><contributor>Yu, Jeffrey Xu</contributor><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Lee, Yongmi</creatorcontrib><creatorcontrib>Seo, Sungbo</creatorcontrib><creatorcontrib>Ryu, Keun Ho</creatorcontrib><title>Discovery of Temporal Frequent Patterns Using TFP-Tree</title><title>Advances in Web-Age Information Management</title><description>Mining temporal frequent patterns in transaction databases, time-series databases, and many other kinds of databases have been widely studied in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and long patterns. In this paper, we propose an efficient temporal frequent pattern mining method using the TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (i) one can scan the transaction only once for reducing significantly the I/O cost; (ii) one can store all transactions in leaf nodes but only save the star calendar patterns in the internal nodes. So we can save a large amount of memory. Moreover, we divide the transactions into many partitions by maximum size domain which significantly saves the memory; (iii) we efficiently discover each star calendar pattern in internal node using the frequent calendar patterns of leaf node. Thus we can reduce significantly the computational time. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the classical frequent pattern mining algorithms.</description><subject>Applied sciences</subject><subject>Association Rule</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Frequent Itemsets</subject><subject>Frequent Pattern</subject><subject>Information systems. Data bases</subject><subject>Internal Node</subject><subject>Leaf Node</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540352259</isbn><isbn>3540352252</isbn><isbn>3540352260</isbn><isbn>9783540352266</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAUhc1LopRO_IEsDAyBe339iEdUKCBVokM6R05iV4E2CXZA6r8nqCBxljOcT2f4GLtCuEUAfYeotSSAguCIXZAUQJJzBcdsggoxJRLmhM2Mzv42aU7ZBAh4arSgczaL8Q3GECrI5ISphyZW3ZcL-6TzSe52fRfsNlkE9_Hp2iFZ2WFwoY3JOjbtJskXqzQPzl2yM2-30c1-e8rWi8d8_pwuX59e5vfLtOdohrT06Mh4sFXmRKWNsGhrXwuPpVbKE-mS17qUSpRW1SBUbZyUuibvKg4Zpym7Pvz2NlZ264NtqyYWfWh2NuwLNCozmJmRuzlwcZzajQtF2XXvsUAofsQV_8TRNzoeWao</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Jin, Long</creator><creator>Lee, Yongmi</creator><creator>Seo, Sungbo</creator><creator>Ryu, Keun Ho</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Discovery of Temporal Frequent Patterns Using TFP-Tree</title><author>Jin, Long ; Lee, Yongmi ; Seo, Sungbo ; Ryu, Keun Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-bf1e39f0ac8e4c794a1adfd4f1b766f337b2d7b564ba6d046d9e557d3fec20823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Association Rule</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Frequent Itemsets</topic><topic>Frequent Pattern</topic><topic>Information systems. Data bases</topic><topic>Internal Node</topic><topic>Leaf Node</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Lee, Yongmi</creatorcontrib><creatorcontrib>Seo, Sungbo</creatorcontrib><creatorcontrib>Ryu, Keun Ho</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Long</au><au>Lee, Yongmi</au><au>Seo, Sungbo</au><au>Ryu, Keun Ho</au><au>Kitsuregawa, Masaru</au><au>Leong, Hong Va</au><au>Yu, Jeffrey Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discovery of Temporal Frequent Patterns Using TFP-Tree</atitle><btitle>Advances in Web-Age Information Management</btitle><date>2006</date><risdate>2006</risdate><spage>349</spage><epage>361</epage><pages>349-361</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540352259</isbn><isbn>3540352252</isbn><eisbn>3540352260</eisbn><eisbn>9783540352266</eisbn><abstract>Mining temporal frequent patterns in transaction databases, time-series databases, and many other kinds of databases have been widely studied in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and long patterns. In this paper, we propose an efficient temporal frequent pattern mining method using the TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (i) one can scan the transaction only once for reducing significantly the I/O cost; (ii) one can store all transactions in leaf nodes but only save the star calendar patterns in the internal nodes. So we can save a large amount of memory. Moreover, we divide the transactions into many partitions by maximum size domain which significantly saves the memory; (iii) we efficiently discover each star calendar pattern in internal node using the frequent calendar patterns of leaf node. Thus we can reduce significantly the computational time. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the classical frequent pattern mining algorithms.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11775300_30</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Web-Age Information Management, 2006, p.349-361 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19689189 |
source | Springer Books |
subjects | Applied sciences Association Rule Computer science control theory systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Exact sciences and technology Frequent Itemsets Frequent Pattern Information systems. Data bases Internal Node Leaf Node Memory organisation. Data processing Software |
title | Discovery of Temporal Frequent Patterns Using TFP-Tree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discovery%20of%20Temporal%20Frequent%20Patterns%20Using%20TFP-Tree&rft.btitle=Advances%20in%20Web-Age%20Information%20Management&rft.au=Jin,%20Long&rft.date=2006&rft.spage=349&rft.epage=361&rft.pages=349-361&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540352259&rft.isbn_list=3540352252&rft_id=info:doi/10.1007/11775300_30&rft_dat=%3Cpascalfrancis_sprin%3E19689189%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540352260&rft.eisbn_list=9783540352266&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |