Reconfigurations in Graphs and Grids

Let G be a connected graph, and let V and V ′ two n-element subsets of its vertex set V(G). Imagine that we place a chip at each element of V and we want to move them into the positions of V ′ (V and V ′ may have common elements). A move is defined as shifting a chip from v1 to v2 (v1,v2 ∈ V(G)) on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Calinescu, Gruia, Dumitrescu, Adrian, Pach, János
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue
container_start_page 262
container_title
container_volume
creator Calinescu, Gruia
Dumitrescu, Adrian
Pach, János
description Let G be a connected graph, and let V and V ′ two n-element subsets of its vertex set V(G). Imagine that we place a chip at each element of V and we want to move them into the positions of V ′ (V and V ′ may have common elements). A move is defined as shifting a chip from v1 to v2 (v1,v2 ∈ V(G)) on a path formed by edges of G so that no intermediate vertices are occupied. We give upper and lower bounds on the number of moves that are necessary, and analyze the computational complexity of this problem under various assumptions: labeled versus unlabeled chips, arbitrary graphs versus the case when the graph is the rectangular (infinite) planar grid, etc. We provide hardness and inapproximability results for several variants of the problem. We also give a linear-time algorithm which performs an optimal (minimum) number of moves for the unlabeled version in a tree, and a constant-ratio approximation algorithm for the unlabeled version in a graph. The graph algorithm uses the tree algorithm as a subroutine.
doi_str_mv 10.1007/11682462_27
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19689081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19689081</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-b8f268074d8f7a0223cfab727c563d7b15291c1f84462fa516fcfeec53fab2ee3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUheMLHOqs_ANd6MLFaO7NeymlVqEgiK5DJpPUaJ0ZJnXhvzdSF3o358L5OHAOIedAr4FSdQMgNXKJFtUBqY3STHDKUAkJh6QCCdAwxs3RP0_wY1JRRrExirNTUuf8Rssx0BJ1RS6egh_6mDafk9uloc_z1M9Xkxtf89z1XXlTl8_ISXTbHOpfnZGXu-Xz4r5ZP64eFrfrZkQwu6bVEaWminc6KkcRmY-uVai8kKxTLQg04CFqXlpEJ0BGH0PwghUMQ2AzcrnPHV32bhsn1_uU7TilDzd9WTBSG6qhcFd7Lher34TJtsPwni1Q-7OU_bMU-wbku1PZ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reconfigurations in Graphs and Grids</title><source>Springer Books</source><creator>Calinescu, Gruia ; Dumitrescu, Adrian ; Pach, János</creator><contributor>Kiwi, Marcos ; Correa, José R. ; Hevia, Alejandro</contributor><creatorcontrib>Calinescu, Gruia ; Dumitrescu, Adrian ; Pach, János ; Kiwi, Marcos ; Correa, José R. ; Hevia, Alejandro</creatorcontrib><description>Let G be a connected graph, and let V and V ′ two n-element subsets of its vertex set V(G). Imagine that we place a chip at each element of V and we want to move them into the positions of V ′ (V and V ′ may have common elements). A move is defined as shifting a chip from v1 to v2 (v1,v2 ∈ V(G)) on a path formed by edges of G so that no intermediate vertices are occupied. We give upper and lower bounds on the number of moves that are necessary, and analyze the computational complexity of this problem under various assumptions: labeled versus unlabeled chips, arbitrary graphs versus the case when the graph is the rectangular (infinite) planar grid, etc. We provide hardness and inapproximability results for several variants of the problem. We also give a linear-time algorithm which performs an optimal (minimum) number of moves for the unlabeled version in a tree, and a constant-ratio approximation algorithm for the unlabeled version in a graph. The graph algorithm uses the tree algorithm as a subroutine.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540327554</identifier><identifier>ISBN: 354032755X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540327561</identifier><identifier>EISBN: 3540327568</identifier><identifier>DOI: 10.1007/11682462_27</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Feasible Solution ; Free Vertex ; Intermediate Vertex ; Local Ratio ; Recursive Call ; Theoretical computing</subject><ispartof>LATIN 2006: Theoretical Informatics, 2006, p.262-273</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11682462_27$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11682462_27$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19689081$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kiwi, Marcos</contributor><contributor>Correa, José R.</contributor><contributor>Hevia, Alejandro</contributor><creatorcontrib>Calinescu, Gruia</creatorcontrib><creatorcontrib>Dumitrescu, Adrian</creatorcontrib><creatorcontrib>Pach, János</creatorcontrib><title>Reconfigurations in Graphs and Grids</title><title>LATIN 2006: Theoretical Informatics</title><description>Let G be a connected graph, and let V and V ′ two n-element subsets of its vertex set V(G). Imagine that we place a chip at each element of V and we want to move them into the positions of V ′ (V and V ′ may have common elements). A move is defined as shifting a chip from v1 to v2 (v1,v2 ∈ V(G)) on a path formed by edges of G so that no intermediate vertices are occupied. We give upper and lower bounds on the number of moves that are necessary, and analyze the computational complexity of this problem under various assumptions: labeled versus unlabeled chips, arbitrary graphs versus the case when the graph is the rectangular (infinite) planar grid, etc. We provide hardness and inapproximability results for several variants of the problem. We also give a linear-time algorithm which performs an optimal (minimum) number of moves for the unlabeled version in a tree, and a constant-ratio approximation algorithm for the unlabeled version in a graph. The graph algorithm uses the tree algorithm as a subroutine.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Feasible Solution</subject><subject>Free Vertex</subject><subject>Intermediate Vertex</subject><subject>Local Ratio</subject><subject>Recursive Call</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540327554</isbn><isbn>354032755X</isbn><isbn>9783540327561</isbn><isbn>3540327568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkEtLAzEUheMLHOqs_ANd6MLFaO7NeymlVqEgiK5DJpPUaJ0ZJnXhvzdSF3o358L5OHAOIedAr4FSdQMgNXKJFtUBqY3STHDKUAkJh6QCCdAwxs3RP0_wY1JRRrExirNTUuf8Rssx0BJ1RS6egh_6mDafk9uloc_z1M9Xkxtf89z1XXlTl8_ISXTbHOpfnZGXu-Xz4r5ZP64eFrfrZkQwu6bVEaWminc6KkcRmY-uVai8kKxTLQg04CFqXlpEJ0BGH0PwghUMQ2AzcrnPHV32bhsn1_uU7TilDzd9WTBSG6qhcFd7Lher34TJtsPwni1Q-7OU_bMU-wbku1PZ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Calinescu, Gruia</creator><creator>Dumitrescu, Adrian</creator><creator>Pach, János</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Reconfigurations in Graphs and Grids</title><author>Calinescu, Gruia ; Dumitrescu, Adrian ; Pach, János</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-b8f268074d8f7a0223cfab727c563d7b15291c1f84462fa516fcfeec53fab2ee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Feasible Solution</topic><topic>Free Vertex</topic><topic>Intermediate Vertex</topic><topic>Local Ratio</topic><topic>Recursive Call</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calinescu, Gruia</creatorcontrib><creatorcontrib>Dumitrescu, Adrian</creatorcontrib><creatorcontrib>Pach, János</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calinescu, Gruia</au><au>Dumitrescu, Adrian</au><au>Pach, János</au><au>Kiwi, Marcos</au><au>Correa, José R.</au><au>Hevia, Alejandro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reconfigurations in Graphs and Grids</atitle><btitle>LATIN 2006: Theoretical Informatics</btitle><date>2006</date><risdate>2006</risdate><spage>262</spage><epage>273</epage><pages>262-273</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540327554</isbn><isbn>354032755X</isbn><eisbn>9783540327561</eisbn><eisbn>3540327568</eisbn><abstract>Let G be a connected graph, and let V and V ′ two n-element subsets of its vertex set V(G). Imagine that we place a chip at each element of V and we want to move them into the positions of V ′ (V and V ′ may have common elements). A move is defined as shifting a chip from v1 to v2 (v1,v2 ∈ V(G)) on a path formed by edges of G so that no intermediate vertices are occupied. We give upper and lower bounds on the number of moves that are necessary, and analyze the computational complexity of this problem under various assumptions: labeled versus unlabeled chips, arbitrary graphs versus the case when the graph is the rectangular (infinite) planar grid, etc. We provide hardness and inapproximability results for several variants of the problem. We also give a linear-time algorithm which performs an optimal (minimum) number of moves for the unlabeled version in a tree, and a constant-ratio approximation algorithm for the unlabeled version in a graph. The graph algorithm uses the tree algorithm as a subroutine.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11682462_27</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof LATIN 2006: Theoretical Informatics, 2006, p.262-273
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19689081
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Feasible Solution
Free Vertex
Intermediate Vertex
Local Ratio
Recursive Call
Theoretical computing
title Reconfigurations in Graphs and Grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reconfigurations%20in%20Graphs%20and%20Grids&rft.btitle=LATIN%202006:%20Theoretical%20Informatics&rft.au=Calinescu,%20Gruia&rft.date=2006&rft.spage=262&rft.epage=273&rft.pages=262-273&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540327554&rft.isbn_list=354032755X&rft_id=info:doi/10.1007/11682462_27&rft_dat=%3Cpascalfrancis_sprin%3E19689081%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540327561&rft.eisbn_list=3540327568&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true