LJQ: A Strongly Focused Calculus for Intuitionistic Logic
LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 173 |
container_title | |
container_volume | |
creator | Dyckhoff, Roy Lengrand, Stéphane |
description | LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus. |
doi_str_mv | 10.1007/11780342_19 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19688485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19688485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-9a13e1646c71c168c8c685fc0dd9a3589f3c4ec4de642a336bdd3dccca66b2e83</originalsourceid><addsrcrecordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfrHzYrNVFYWiSAgBc-S8OJVFiKs4GfrvCSpIDFd3uEd3OIxdgbgFIfI7gFwLqdISzBG7kJkSU1CbYzYDBEikVOaELUyu_zbEUzYTUqSJyZU8Z4sYfSUEGKMzUDNmiufXe77kb0Mfum275-tAY3Q1X9mWxnaMvAk933TD6AcfOh8HT7wIW0-X7KyxbXSL356zj_XD--opKV4eN6tlkVCKMCTGgnSACikHAtSkCXXWkKhrY2WmTSNJOVK1Q5VaKbGqa1kTkUWsUqflnF0ffnc2km2b3nbkY7nr_Zft95MJ1FrpbOJuDlycpm7r-rIK4TOWIMofd-U_d_IbW9Fa5g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</title><source>Springer Books</source><creator>Dyckhoff, Roy ; Lengrand, Stéphane</creator><contributor>Tucker, John V. ; Beckmann, Arnold ; Berger, Ulrich ; Löwe, Benedikt</contributor><creatorcontrib>Dyckhoff, Roy ; Lengrand, Stéphane ; Tucker, John V. ; Beckmann, Arnold ; Berger, Ulrich ; Löwe, Benedikt</creatorcontrib><description>LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540354666</identifier><identifier>ISBN: 3540354662</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540354689</identifier><identifier>EISBN: 9783540354680</identifier><identifier>DOI: 10.1007/11780342_19</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; call-by-value semantics ; Computer science; control theory; systems ; depth-bounded ; Exact sciences and technology ; focused ; guarded logic ; purification ; Sequent calculus ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2006, p.173-185</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-9a13e1646c71c168c8c685fc0dd9a3589f3c4ec4de642a336bdd3dccca66b2e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11780342_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11780342_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19688485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tucker, John V.</contributor><contributor>Beckmann, Arnold</contributor><contributor>Berger, Ulrich</contributor><contributor>Löwe, Benedikt</contributor><creatorcontrib>Dyckhoff, Roy</creatorcontrib><creatorcontrib>Lengrand, Stéphane</creatorcontrib><title>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</title><title>Lecture notes in computer science</title><description>LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>call-by-value semantics</subject><subject>Computer science; control theory; systems</subject><subject>depth-bounded</subject><subject>Exact sciences and technology</subject><subject>focused</subject><subject>guarded logic</subject><subject>purification</subject><subject>Sequent calculus</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540354666</isbn><isbn>3540354662</isbn><isbn>3540354689</isbn><isbn>9783540354680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfrHzYrNVFYWiSAgBc-S8OJVFiKs4GfrvCSpIDFd3uEd3OIxdgbgFIfI7gFwLqdISzBG7kJkSU1CbYzYDBEikVOaELUyu_zbEUzYTUqSJyZU8Z4sYfSUEGKMzUDNmiufXe77kb0Mfum275-tAY3Q1X9mWxnaMvAk933TD6AcfOh8HT7wIW0-X7KyxbXSL356zj_XD--opKV4eN6tlkVCKMCTGgnSACikHAtSkCXXWkKhrY2WmTSNJOVK1Q5VaKbGqa1kTkUWsUqflnF0ffnc2km2b3nbkY7nr_Zft95MJ1FrpbOJuDlycpm7r-rIK4TOWIMofd-U_d_IbW9Fa5g</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Dyckhoff, Roy</creator><creator>Lengrand, Stéphane</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</title><author>Dyckhoff, Roy ; Lengrand, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-9a13e1646c71c168c8c685fc0dd9a3589f3c4ec4de642a336bdd3dccca66b2e83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>call-by-value semantics</topic><topic>Computer science; control theory; systems</topic><topic>depth-bounded</topic><topic>Exact sciences and technology</topic><topic>focused</topic><topic>guarded logic</topic><topic>purification</topic><topic>Sequent calculus</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyckhoff, Roy</creatorcontrib><creatorcontrib>Lengrand, Stéphane</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyckhoff, Roy</au><au>Lengrand, Stéphane</au><au>Tucker, John V.</au><au>Beckmann, Arnold</au><au>Berger, Ulrich</au><au>Löwe, Benedikt</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>173</spage><epage>185</epage><pages>173-185</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540354666</isbn><isbn>3540354662</isbn><eisbn>3540354689</eisbn><eisbn>9783540354680</eisbn><abstract>LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11780342_19</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.173-185 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19688485 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences call-by-value semantics Computer science control theory systems depth-bounded Exact sciences and technology focused guarded logic purification Sequent calculus Theoretical computing |
title | LJQ: A Strongly Focused Calculus for Intuitionistic Logic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LJQ:%20A%20Strongly%20Focused%20Calculus%20for%20Intuitionistic%20Logic&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Dyckhoff,%20Roy&rft.date=2006&rft.spage=173&rft.epage=185&rft.pages=173-185&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540354666&rft.isbn_list=3540354662&rft_id=info:doi/10.1007/11780342_19&rft_dat=%3Cpascalfrancis_sprin%3E19688485%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540354689&rft.eisbn_list=9783540354680&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |