LJQ: A Strongly Focused Calculus for Intuitionistic Logic

LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dyckhoff, Roy, Lengrand, Stéphane
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue
container_start_page 173
container_title
container_volume
creator Dyckhoff, Roy
Lengrand, Stéphane
description LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus.
doi_str_mv 10.1007/11780342_19
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19688485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19688485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-9a13e1646c71c168c8c685fc0dd9a3589f3c4ec4de642a336bdd3dccca66b2e83</originalsourceid><addsrcrecordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfrHzYrNVFYWiSAgBc-S8OJVFiKs4GfrvCSpIDFd3uEd3OIxdgbgFIfI7gFwLqdISzBG7kJkSU1CbYzYDBEikVOaELUyu_zbEUzYTUqSJyZU8Z4sYfSUEGKMzUDNmiufXe77kb0Mfum275-tAY3Q1X9mWxnaMvAk933TD6AcfOh8HT7wIW0-X7KyxbXSL356zj_XD--opKV4eN6tlkVCKMCTGgnSACikHAtSkCXXWkKhrY2WmTSNJOVK1Q5VaKbGqa1kTkUWsUqflnF0ffnc2km2b3nbkY7nr_Zft95MJ1FrpbOJuDlycpm7r-rIK4TOWIMofd-U_d_IbW9Fa5g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</title><source>Springer Books</source><creator>Dyckhoff, Roy ; Lengrand, Stéphane</creator><contributor>Tucker, John V. ; Beckmann, Arnold ; Berger, Ulrich ; Löwe, Benedikt</contributor><creatorcontrib>Dyckhoff, Roy ; Lengrand, Stéphane ; Tucker, John V. ; Beckmann, Arnold ; Berger, Ulrich ; Löwe, Benedikt</creatorcontrib><description>LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540354666</identifier><identifier>ISBN: 3540354662</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540354689</identifier><identifier>EISBN: 9783540354680</identifier><identifier>DOI: 10.1007/11780342_19</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; call-by-value semantics ; Computer science; control theory; systems ; depth-bounded ; Exact sciences and technology ; focused ; guarded logic ; purification ; Sequent calculus ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2006, p.173-185</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-9a13e1646c71c168c8c685fc0dd9a3589f3c4ec4de642a336bdd3dccca66b2e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11780342_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11780342_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19688485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tucker, John V.</contributor><contributor>Beckmann, Arnold</contributor><contributor>Berger, Ulrich</contributor><contributor>Löwe, Benedikt</contributor><creatorcontrib>Dyckhoff, Roy</creatorcontrib><creatorcontrib>Lengrand, Stéphane</creatorcontrib><title>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</title><title>Lecture notes in computer science</title><description>LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>call-by-value semantics</subject><subject>Computer science; control theory; systems</subject><subject>depth-bounded</subject><subject>Exact sciences and technology</subject><subject>focused</subject><subject>guarded logic</subject><subject>purification</subject><subject>Sequent calculus</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540354666</isbn><isbn>3540354662</isbn><isbn>3540354689</isbn><isbn>9783540354680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfrHzYrNVFYWiSAgBc-S8OJVFiKs4GfrvCSpIDFd3uEd3OIxdgbgFIfI7gFwLqdISzBG7kJkSU1CbYzYDBEikVOaELUyu_zbEUzYTUqSJyZU8Z4sYfSUEGKMzUDNmiufXe77kb0Mfum275-tAY3Q1X9mWxnaMvAk933TD6AcfOh8HT7wIW0-X7KyxbXSL356zj_XD--opKV4eN6tlkVCKMCTGgnSACikHAtSkCXXWkKhrY2WmTSNJOVK1Q5VaKbGqa1kTkUWsUqflnF0ffnc2km2b3nbkY7nr_Zft95MJ1FrpbOJuDlycpm7r-rIK4TOWIMofd-U_d_IbW9Fa5g</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Dyckhoff, Roy</creator><creator>Lengrand, Stéphane</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</title><author>Dyckhoff, Roy ; Lengrand, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-9a13e1646c71c168c8c685fc0dd9a3589f3c4ec4de642a336bdd3dccca66b2e83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>call-by-value semantics</topic><topic>Computer science; control theory; systems</topic><topic>depth-bounded</topic><topic>Exact sciences and technology</topic><topic>focused</topic><topic>guarded logic</topic><topic>purification</topic><topic>Sequent calculus</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyckhoff, Roy</creatorcontrib><creatorcontrib>Lengrand, Stéphane</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyckhoff, Roy</au><au>Lengrand, Stéphane</au><au>Tucker, John V.</au><au>Beckmann, Arnold</au><au>Berger, Ulrich</au><au>Löwe, Benedikt</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LJQ: A Strongly Focused Calculus for Intuitionistic Logic</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>173</spage><epage>185</epage><pages>173-185</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540354666</isbn><isbn>3540354662</isbn><eisbn>3540354689</eisbn><eisbn>9783540354680</eisbn><abstract>LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof-search calculi and to call-by-value reduction in lambda calculus.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11780342_19</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.173-185
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19688485
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
call-by-value semantics
Computer science
control theory
systems
depth-bounded
Exact sciences and technology
focused
guarded logic
purification
Sequent calculus
Theoretical computing
title LJQ: A Strongly Focused Calculus for Intuitionistic Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LJQ:%20A%20Strongly%20Focused%20Calculus%20for%20Intuitionistic%20Logic&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Dyckhoff,%20Roy&rft.date=2006&rft.spage=173&rft.epage=185&rft.pages=173-185&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540354666&rft.isbn_list=3540354662&rft_id=info:doi/10.1007/11780342_19&rft_dat=%3Cpascalfrancis_sprin%3E19688485%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540354689&rft.eisbn_list=9783540354680&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true